Design and analysis of magnetorheological damper based ankle-foot prosthesis prototype

被引:6
|
作者
Negi, Sachin [1 ]
Sagar, Ujjwal [2 ]
Nautiyal, Vijay Kumar [3 ]
Sharma, Neeraj [1 ]
机构
[1] Indian Inst Technol BHU Varanasi, Sch Biomed Engn, Varanasi, Uttar Pradesh, India
[2] MKU Ltd, Electroopt Unit, Kanpur, Uttar Pradesh, India
[3] Nautiyal Orthot Prosthet Rehabil Clin, Dehra Dun, Uttarakhand, India
关键词
Electromyography; Ankle-foot prosthesis; Inertial measurement units; Magnetorheological damper;
D O I
10.1108/IR-04-2021-0084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype. Design/methodology/approach The ankle-foot prostheses prototype is proposed using the lightweight three dimensional (3 D)-printed parts, MR damper and digital servomotor. Initially, the computer-aided design (CAD) model of the prosthetic foot, leaf spring, retention spring and the various connecting parts required to connect the pylon and damper actuator assemblies are designed using CAD software. Later, the fused deposition modeling 3 D printer-based technique prints a prosthetic foot and other connecting parts using Acrylonitrile Butadiene Styrene filament. The prototype consists of two control parts: the first part controls the MR actuator that absorbs the impacts during walking. The second part is the control of the electric actuator intended to generate the dorsiflexion and plantar flexion movements. Finally, the prototype is tested on a transtibial amputee under the supervision of a prosthetist. Findings The ANalysis SYStems software-based analysis has shown that the prosthetic foot has a factor of safety values between 4.7 and 8.7 for heel strike, mid-swing and toe-off; hence, it is safe from mechanical failure. The designed MR damper-based ankle-foot prosthesis prototype is tested on an amputee for a level-ground walk; he felt comfortable compared to his passive prosthesis. Originality/value The design of an MR damper-based prosthesis prototype offers a better dynamic range for locomotion than passive prostheses. It reduces the injuries and provides relief to the transtibial amputees.
引用
收藏
页码:240 / 248
页数:9
相关论文
共 50 条
  • [1] Biomechanical design of a powered ankle-foot prosthesis
    Au, Samuel K.
    Weber, Jeff
    Herr, Hugh
    2007 IEEE 10TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1 AND 2, 2007, : 298 - 303
  • [2] Powered ankle-foot prosthesis
    Biomechatronics Group, MIT Media Lab., Cambridge, MA 02139, United States
    IEEE Rob Autom Mag, 2008, 3 (52-59):
  • [3] Actuator Design for Robotic Powered an Ankle-Foot Prosthesis
    Ahmed, M. Hannan
    Wahid, Fawaz
    Ali, Ahsan
    Tiwana, Mohsin I.
    Iqbal, Javaid
    Lovell, Nigel H.
    2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), 2015, : 136 - 139
  • [4] Biomechanical Design and Prototyping of a Powered Ankle-Foot Prosthesis
    Alleva, Stefano
    Antonelli, Michele Gabrio
    Beomonte Zobel, Pierluigi
    Durante, Francesco
    MATERIALS, 2020, 13 (24) : 1 - 15
  • [5] Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics
    Safaeepour, Zahra
    Esteki, Ali
    Ghomshe, Farhad Tabatabai
    Mousavai, Mohammad E.
    PROSTHETICS AND ORTHOTICS INTERNATIONAL, 2014, 38 (05) : 400 - 404
  • [6] Passive Ankle-Foot Prosthesis Prototype with Extended Push-Off
    Brackx, Branko
    Van Damme, Michael
    Matthys, Arnout
    Vanderborght, Bram
    Lefeber, Dirk
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
  • [7] Personalized design of ankle-foot prosthesis based on computer modeling of amputee locomotion
    Gharini, Mohammad
    Mohammadi Moghaddam, Majid
    Farahmand, Farzam
    ASSISTIVE TECHNOLOGY, 2020, 32 (02) : 100 - 108
  • [8] Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot
    Alves, Joana
    Seabra, Eurico
    Ferreira, Cesar
    Santos, Cristina P.
    Reis, Luis Paulo
    2017 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2017, : 128 - 133
  • [9] Design and development of ankle-foot prosthesis with delayed release of plantarflexion
    Mitchell, Michael
    Craig, Katelynn
    Kyberd, Peter
    Biden, Edmund
    Bush, Greg
    JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 2013, 50 (03): : 409 - 422
  • [10] A Study of Human Walking Biomechanics for Ankle-Foot Prosthesis Design
    Fandakli, Selin Aydin
    Okumus, Halil Ibrahim
    Ozturk, Mehmet
    2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,