Biomechanical design of a powered ankle-foot prosthesis

被引:105
|
作者
Au, Samuel K. [1 ]
Weber, Jeff [1 ]
Herr, Hugh [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1109/ICORR.2007.4428441
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Although the potential benefits of a powered ankle-foot prosthesis have been well documented, no one has successfully developed and verified that such a prosthesis can improve amputee gait compared to a conventional passive-elastic prosthesis. One of the main hurdles that hinder such a development is the challenge of building an ankle-foot prosthesis that matches the size and weight of the intact ankle, but still provides a sufficiently large instantaneous power output and torque to propel an amputee. In this paper, we present a novel, powered ankle-foot prosthesis that overcomes these design challenges. The prosthesis comprises an unidirectional spring, configured in parallel with a force-controllable actuator with series elasticity. With this architecture, the ankle-foot prosthesis matches the size and weight of the human ankle, and is shown to be satisfying the restrictive design specifications dictated by normal human ankle walking biomechanics.
引用
收藏
页码:298 / 303
页数:6
相关论文
共 50 条
  • [1] Biomechanical Design and Prototyping of a Powered Ankle-Foot Prosthesis
    Alleva, Stefano
    Antonelli, Michele Gabrio
    Beomonte Zobel, Pierluigi
    Durante, Francesco
    MATERIALS, 2020, 13 (24) : 1 - 15
  • [2] Powered ankle-foot prosthesis
    Biomechatronics Group, MIT Media Lab., Cambridge, MA 02139, United States
    IEEE Rob Autom Mag, 2008, 3 (52-59):
  • [3] PANTOE 1: Biomechanical Design of Powered Ankle-foot Prosthesis with Compliant Joints and Segmented Foot
    Zhu, Jinying
    Wang, Qining
    Wang, Long
    2010 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2010,
  • [4] Actuator Design for Robotic Powered an Ankle-Foot Prosthesis
    Ahmed, M. Hannan
    Wahid, Fawaz
    Ali, Ahsan
    Tiwana, Mohsin I.
    Iqbal, Javaid
    Lovell, Nigel H.
    2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), 2015, : 136 - 139
  • [5] Active control of a powered ankle-foot prosthesis
    Ashwin Needham
    Andrzej Ordys
    Journal of Foot and Ankle Research, 7 (Suppl 1)
  • [6] Design of a powered ankle-foot prosthesis with an adjustable stiffness toe joint
    She, Haotian
    Zhu, Jinying
    Tian, Ye
    Wang, Yanchao
    Huang, Qiang
    ADVANCED ROBOTICS, 2020, 34 (10) : 689 - 697
  • [7] Conceptual Design of a Powered Ankle-Foot Prosthesis for Walking with Inversion and Eversion
    Masum, Habib
    Bhaumik, Subhasis
    Ray, Ranjit
    2ND INTERNATIONAL CONFERENCE ON INNOVATIONS IN AUTOMATION AND MECHATRONICS ENGINEERING, ICIAME 2014, 2014, 14 : 228 - 235
  • [8] Design of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
    Gao, Fei
    Liu, Yannan
    Liao, Wei-Hsin
    JOURNAL OF MECHANICAL DESIGN, 2018, 140 (05)
  • [9] Design of Powered Ankle-Foot Prosthesis Driven by Parallel Elastic Actuator
    Gao, Fei
    Liao, Wei-Hsin
    Ma, Hao
    Qin, Lai-Yin
    Chen, Bing
    PROCEEDINGS OF THE IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR 2015), 2015, : 374 - 379
  • [10] Powered Ankle-Foot Prosthesis for the improvement of amputee ambulation
    Au, Samuel K.
    Herr, Hugh
    Weber, Jeff
    Martinez-Villalpando, Ernesto C.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 3020 - 3026