CrossModalNet: exploiting quality preoperative images for multimodal image registration

被引:4
|
作者
Sun, Jiawei [1 ,2 ]
Liu, Cong [1 ,2 ,3 ]
Li, Chunying [1 ,2 ]
Lu, Zhengda [1 ,2 ]
He, Mu [1 ,2 ]
Gao, Liugang [1 ,2 ]
Lin, Tao [1 ,2 ]
Sui, Jianfeng [1 ,2 ]
Xie, Kai [1 ,2 ]
Ni, Xinye [1 ,2 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou 2 Peoples Hosp, Changzhou 213003, Peoples R China
[2] Nanjing Med Univ, Ctr Med Phys, Changzhou 213003, Peoples R China
[3] Shanghai Business Sch, Fac Business Informat, Shanghai 200235, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2021年 / 66卷 / 17期
基金
中国博士后科学基金;
关键词
image-guided radiation therapy; multimodal image registration; convolutional neural network; cross modality;
D O I
10.1088/1361-6560/ac195e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A long-standing problem in image-guided radiotherapy is that inferior intraoperative images present a difficult problem for automatic registration algorithms. Particularly for digital radiography (DR) and digitally reconstructed radiograph (DRR), the blurred, low-contrast, and noisy DR makes the multimodal registration of DR-DRR challenging. Therefore, we propose a novel CNN-based method called CrossModalNet to exploit the quality preoperative modality (DRR) for handling the limitations of intraoperative images (DR), thereby improving the registration accuracy. The method consists of two parts: DR-DRR contour predictions and contour-based rigid registration. We have designed the CrossModal Attention Module and CrossModal Refine Module to fully exploit the multiscale crossmodal features and implement the crossmodal interactions during the feature encoding and decoding stages. Then, the predicted anatomical contours of DR-DRR are registered by the classic mutual information method. We collected 2486 patient scans to train CrossModalNet and 170 scans to test its performance. The results show that it outperforms the classic and state-of-the-art methods with 95th percentile Hausdorff distance of 5.82 pixels and registration accuracy of 81.2%. The code is available at https://github.com/lc82111/crossModalNet.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Hybrid optimization for ultrasound and multimodal image registration
    Wachowiak, MP
    Smolíková, R
    Elmaghraby, AS
    PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 2418 - 2421
  • [42] Multimodal macula mapping by deformable image registration
    Baptista, P.
    Ferreira, J.
    Bernardes, R.
    Dias, J.
    Cunha-Vaz, J.
    COMPUTATIONAL MODELLING OF OBJECTS REPRESENTED IN IMAGES: FUNDAMENTALS, METHODS AND APPLICATIONS, 2007, : 85 - +
  • [43] Image Registration and Multimodal Imaging of Reticular Pseudodrusen
    Sohrab, Mahsa A.
    Smith, R. Theodore
    Salehi-Had, Hani
    Sadda, SriniVas R.
    Fawzi, Amani A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2011, 52 (08) : 5743 - 5748
  • [44] Multimodal functional and morphological nonrigid image registration
    Bernardes, R
    Baptista, P
    Cunha-Vaz, J
    Dias, J
    Cunha-Vaz, J
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 725 - 728
  • [45] An operator of gradient consistency for multimodal image registration
    Yan, Li
    Hu, Xiubing
    Chen, Changjun
    Ma, Zhenling
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2013, 38 (08): : 969 - 972
  • [46] Review of multimodal medical image registration algorithm
    Feng J.
    Deng J.
    Zhou M.
    Chen B.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52 (05): : 29 - 49and157
  • [47] Multimodal image registration using local frequency
    Liu, J
    Vemuri, BC
    Bova, F
    FIFTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, 2000, : 120 - 125
  • [48] Multimodal image registration using a variational approach
    Henn, S
    Witsch, K
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (04): : 1429 - 1447
  • [49] Multimodal image registration based on edges and junctions
    Li, Yong
    Stevenson, Robert L.
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2007, PTS 1 AND 2, 2007, 6508
  • [50] Multimodal image registration using Laplacian commutators
    Zimmer, Veronika A.
    Gonzalez Ballester, Miguel Angel
    Piella, Gemma
    INFORMATION FUSION, 2019, 49 : 130 - 145