CrossModalNet: exploiting quality preoperative images for multimodal image registration

被引:4
|
作者
Sun, Jiawei [1 ,2 ]
Liu, Cong [1 ,2 ,3 ]
Li, Chunying [1 ,2 ]
Lu, Zhengda [1 ,2 ]
He, Mu [1 ,2 ]
Gao, Liugang [1 ,2 ]
Lin, Tao [1 ,2 ]
Sui, Jianfeng [1 ,2 ]
Xie, Kai [1 ,2 ]
Ni, Xinye [1 ,2 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou 2 Peoples Hosp, Changzhou 213003, Peoples R China
[2] Nanjing Med Univ, Ctr Med Phys, Changzhou 213003, Peoples R China
[3] Shanghai Business Sch, Fac Business Informat, Shanghai 200235, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2021年 / 66卷 / 17期
基金
中国博士后科学基金;
关键词
image-guided radiation therapy; multimodal image registration; convolutional neural network; cross modality;
D O I
10.1088/1361-6560/ac195e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A long-standing problem in image-guided radiotherapy is that inferior intraoperative images present a difficult problem for automatic registration algorithms. Particularly for digital radiography (DR) and digitally reconstructed radiograph (DRR), the blurred, low-contrast, and noisy DR makes the multimodal registration of DR-DRR challenging. Therefore, we propose a novel CNN-based method called CrossModalNet to exploit the quality preoperative modality (DRR) for handling the limitations of intraoperative images (DR), thereby improving the registration accuracy. The method consists of two parts: DR-DRR contour predictions and contour-based rigid registration. We have designed the CrossModal Attention Module and CrossModal Refine Module to fully exploit the multiscale crossmodal features and implement the crossmodal interactions during the feature encoding and decoding stages. Then, the predicted anatomical contours of DR-DRR are registered by the classic mutual information method. We collected 2486 patient scans to train CrossModalNet and 170 scans to test its performance. The results show that it outperforms the classic and state-of-the-art methods with 95th percentile Hausdorff distance of 5.82 pixels and registration accuracy of 81.2%. The code is available at https://github.com/lc82111/crossModalNet.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Image registration techniques for multimodal sensors
    Altinalev, T
    Çetin, AE
    Yardimci, Y
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2002, 2002, 4728 : 535 - 543
  • [22] Image registration for multimodal cell analysis
    Wuerflinger, Thomas
    Bergmeister, Matthias
    Boecking, Alfred
    Meyer-Ebrecht, Dietrich
    Aach, Til
    CELLULAR ONCOLOGY, 2008, 30 (02) : 166 - 166
  • [23] Assembly Method for Multimodal Image Registration
    Li, Jinping
    Chang, Xiaoli
    Xia, Yingjie
    Han, Yanbin
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 258 - 263
  • [24] FAST PREDICTIVE MULTIMODAL IMAGE REGISTRATION
    Yang, Xiao
    Kwitt, Roland
    Styner, Martin
    Niethammer, Marc
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 858 - 862
  • [25] Flows of diffeomorphisms for multimodal image registration
    Chefd'hotel, C
    Hermosillo, G
    Faugeras, O
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 753 - 756
  • [26] REGISTRATION TECHNIQUES FOR MULTIMODAL IMAGES AND ITS APPLICATION
    Mashiko, Ryosuke
    Iwasaki, Akira
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3027 - 3030
  • [27] Image Registration of Medical Images
    Jamil, Sehrish
    Saman, Gul E.
    2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,
  • [28] Registration, segmentation, and visualization of multimodal brain images
    Viergever, MA
    Maintz, JBA
    Niessen, WJ
    Noordmans, HJ
    Pluim, JPW
    Stokking, R
    Vincken, KL
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2001, 25 (02) : 147 - 151
  • [29] Exploiting Heterogeneous Architectures for Rigid Image Registration
    D'Arnese, Eleonora
    Del Sozzo, Emanuele
    Conficconi, Davide
    Santambrogio, Marco D.
    2021 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (IEEE BIOCAS 2021), 2021,
  • [30] Exploiting structural constraints for accurate image registration
    Rodrigues, MA
    Liu, Y
    2002 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-3, PROCEEDINGS, 2002, : 1 - 6