CrossModalNet: exploiting quality preoperative images for multimodal image registration

被引:4
|
作者
Sun, Jiawei [1 ,2 ]
Liu, Cong [1 ,2 ,3 ]
Li, Chunying [1 ,2 ]
Lu, Zhengda [1 ,2 ]
He, Mu [1 ,2 ]
Gao, Liugang [1 ,2 ]
Lin, Tao [1 ,2 ]
Sui, Jianfeng [1 ,2 ]
Xie, Kai [1 ,2 ]
Ni, Xinye [1 ,2 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou 2 Peoples Hosp, Changzhou 213003, Peoples R China
[2] Nanjing Med Univ, Ctr Med Phys, Changzhou 213003, Peoples R China
[3] Shanghai Business Sch, Fac Business Informat, Shanghai 200235, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2021年 / 66卷 / 17期
基金
中国博士后科学基金;
关键词
image-guided radiation therapy; multimodal image registration; convolutional neural network; cross modality;
D O I
10.1088/1361-6560/ac195e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A long-standing problem in image-guided radiotherapy is that inferior intraoperative images present a difficult problem for automatic registration algorithms. Particularly for digital radiography (DR) and digitally reconstructed radiograph (DRR), the blurred, low-contrast, and noisy DR makes the multimodal registration of DR-DRR challenging. Therefore, we propose a novel CNN-based method called CrossModalNet to exploit the quality preoperative modality (DRR) for handling the limitations of intraoperative images (DR), thereby improving the registration accuracy. The method consists of two parts: DR-DRR contour predictions and contour-based rigid registration. We have designed the CrossModal Attention Module and CrossModal Refine Module to fully exploit the multiscale crossmodal features and implement the crossmodal interactions during the feature encoding and decoding stages. Then, the predicted anatomical contours of DR-DRR are registered by the classic mutual information method. We collected 2486 patient scans to train CrossModalNet and 170 scans to test its performance. The results show that it outperforms the classic and state-of-the-art methods with 95th percentile Hausdorff distance of 5.82 pixels and registration accuracy of 81.2%. The code is available at https://github.com/lc82111/crossModalNet.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Image registration method for multimodal images
    Wang Bingjian
    Lu Quan
    Li Yapeng
    Li Fan
    Bai Liping
    Lu Gang
    Lai Rui
    APPLIED OPTICS, 2011, 50 (13) : 1861 - 1867
  • [2] Multimodal Image Registration of Lung images
    Veduruparthi, Bijju Kranthi
    Mukherjee, Jayanta
    Das, Partha Pratim
    Chatterjee, Sanjoy
    Ray, Soumendranath
    Sen, Partha
    2015 FIFTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2015,
  • [3] A Multimodal Image Registration System for Histology Images
    Diaz Guerrero, Rodrigo Escobar
    Gupta, Yubraj
    Bocklitz, Thomas
    Oliveira, Jose Luis
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 17 - 22
  • [4] Multimodal Image Registration for Preoperative Planning and Image-Guided Neurosurgical Procedures
    Risholm, Petter
    Golby, Alexandra J.
    Wells, William, III
    NEUROSURGERY CLINICS OF NORTH AMERICA, 2011, 22 (02) : 197 - +
  • [5] Multimodal image registration for low-count SPECT images
    Backfrieder, W.
    Hatzl-Griesenhofer, M.
    Huber, H.
    Maschek, W.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2005, 32 : S76 - S76
  • [6] GROUPWISE IMAGE REGISTRATION OF MULTIMODAL HEAD-AND-NECK IMAGES
    Guyader, Jean-Marie
    Huizinga, Wyke
    Fortunati, Valerio
    Veenland, Jifke F.
    Paulides, Margarethus M.
    Niessen, Wiro J.
    Klein, Stefan
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 730 - 733
  • [7] Multimodal Medical Image Registration and Fusion for Quality Enhancement
    Azam, Muhammad Adeel
    Khan, Khan Bahadar
    Ahmad, Muhammad
    Mazzara, Manuel
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 821 - 840
  • [8] Multimodal image registration between SWIR and LWIR images in an embedded system
    Cardenas, Javier
    Figueroa, Miguel
    2018 21ST EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2018), 2018, : 91 - 98
  • [9] Registration of Multimodal Medical Images
    Costin, H.
    Rotariu, Cr.
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2009, 17 (03) : 231 - 254
  • [10] Registration of multimodal images of retina
    Skokan, M
    Skoupy, A
    Jan, J
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1094 - 1096