Rapid and sensitive exosome detection with CRISPR/Cas12a

被引:147
|
作者
Zhao, Xianxian [1 ]
Zhang, Wenqing [1 ]
Qiu, Xiaopei [1 ]
Mei, Qiang [3 ]
Luo, Yang [2 ]
Fu, Weiling [1 ]
机构
[1] Third Mil Med Univ, Army Med Univ, Southwest Hosp, Dept Clin Lab, Chongqing, Peoples R China
[2] Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ,Key Lab Biorheol Sci & Technol, Chongqing 400044, Peoples R China
[3] 922th Hosp Peoples Liberat Army, Dept Pathol, Hengyang 421002, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR; Cas12a; Exosome; Aptasensor; CD63; ULTRACENTRIFUGATION;
D O I
10.1007/s00216-019-02211-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Numerous studies have shown that exosomes are closely related to the pathogenesis of various diseases, especially cancers. Therefore, a rapid and sensitive method for exosome detection will be of great importance for the diagnosis and prognosis of diseases. We report here a method for exosome detection based on the CD63 aptamer and clustered regular interspaced short palindromic repeats (CRISPR)/Cas12a system. This method consists mainly of exosomal membrane protein recognition based on the CD63 aptamer and signal amplification based on CRISPR/Cas12a. The CD63 aptamer, as an easily adaptable nucleic acid strand, is responsible for the conversion of the amounts of exosomes into nucleic acid detection, whereas CRISPR/Cas12a is responsible for highly specific nucleic acid signal amplification. The detection range of the method was determined as 3 x 10(3)-6 x 10(7) particles per microliter. Additionally, we successfully applied this method to detect exosomes in clinical samples from both healthy individuals and patients with lung cancer, and the results were highly consistent with those obtained by nanoparticle tracking analysis. In general, this method provides a highly sensitive and specific method for the detection of exosomes and offers an avenue toward future exosome-based diagnosis of diseases.
引用
下载
收藏
页码:601 / 609
页数:9
相关论文
共 50 条
  • [21] Mini crRNA-mediated CRISPR/Cas12a system (MCM-CRISPR/Cas12a) and its application in RNA detection
    Chen, Xiaolong
    Huang, Chaowang
    Zhang, Jing
    Hu, Qiao
    Wang, Dan
    You, Qianyi
    Guo, Yawen
    Chen, Huaping
    Xu, Jing
    Hu, Mingdong
    TALANTA, 2024, 268
  • [22] CRISPR/Cas12a Coupled With Recombinase Polymerase Amplification for Sensitive and Specific Detection of Aphelenchoides besseyi
    Zhang, Anpeng
    Sun, Bin
    Zhang, Jianming
    Cheng, Can
    Zhou, Jihua
    Niu, Fuan
    Luo, Zhongyong
    Yu, Luzhen
    Yu, Cui
    Dai, Yuting
    Xie, Kaizhen
    Hu, Qiyan
    Qiu, Yue
    Cao, Liming
    Chu, Huangwei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [23] Sensitive and Rapid Detection of Citrus Scab Using an RPA-CRISPR/Cas12a System Combined with a Lateral Flow Assay
    Shin, Kihye
    Kwon, Soon-Hwa
    Lee, Seong-Chan
    Moon, Young-Eel
    PLANTS-BASEL, 2021, 10 (10):
  • [24] CRISPR/Cas12a Coupled With Recombinase Polymerase Amplification for Sensitive and Specific Detection of Aphelenchoides besseyi
    Zhang, Anpeng
    Sun, Bin
    Zhang, Jianming
    Cheng, Can
    Zhou, Jihua
    Niu, Fuan
    Luo, Zhongyong
    Yu, Luzhen
    Yu, Cui
    Dai, Yuting
    Xie, Kaizhen
    Hu, Qiyan
    Qiu, Yue
    Cao, Liming
    Chu, Huangwei
    Frontiers in Bioengineering and Biotechnology, 2022, 10
  • [25] Rapid and Sensitive Detection of Toxigenic Fusarium asiaticum Integrating Recombinase Polymerase Amplification, CRISPR/Cas12a, and Lateral Flow Techniques
    Zhang, Jun
    Liang, Xiaoyan
    Zhang, Hao
    Ishfaq, Shumila
    Xi, Kaifei
    Zhou, Xueping
    Yang, Xiuling
    Guo, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [26] An electrochemical sensing method based on CRISPR/Cas12a system and hairpin DNA probe for rapid and sensitive detection of Salmonella Typhimurium
    He, Yawen
    Jia, Fei
    Sun, Yuxin
    Fang, Weihuan
    Li, Yanbin
    Chen, Juhong
    Fu, Yingchun
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 369
  • [27] A visual, rapid, and sensitive detection platform for Vibrio parahaemolyticus based on RPA-CRISPR/Cas12a and an immunochromatographic test strip
    Wang, Jinbin
    Xu, Danhong
    Liu, Hua
    Liu, Juan
    Zhu, Lemei
    Zeng, Haijuan
    Wu, Wenhui
    FOOD QUALITY AND SAFETY, 2024, 8
  • [28] Clinical validation of engineered CRISPR/Cas12a for rapid SARS-CoV-2 detection
    Long T. Nguyen
    Santosh R. Rananaware
    Brianna L. M. Pizzano
    Brandon T. Stone
    Piyush K. Jain
    Communications Medicine, 2
  • [29] Ultra-Sensitive and Rapid Detection of Pathogenic Yersinia enterocolitica Based on the CRISPR/Cas12a Nucleic Acid Identification Platform
    Xiao, Yiran
    Ren, Honglin
    Hu, Pan
    Wang, Yang
    Wang, Han
    Li, Yansong
    Feng, Kai
    Wang, Cong
    Cao, Qi
    Guo, Yuxi
    Liu, Zengshan
    Lu, Shiying
    FOODS, 2022, 11 (14)
  • [30] A Rapid RPA-CRISPR/Cas12a Detection Method for Adulteration of Goat Milk Powder
    Huang, Shuqin
    Liu, Yan
    Zhang, Xu
    Gai, Zuoqi
    Lei, Hongtao
    Shen, Xing
    FOODS, 2023, 12 (08)