CRISPR/Cas12a Coupled With Recombinase Polymerase Amplification for Sensitive and Specific Detection of Aphelenchoides besseyi

被引:0
|
作者
Zhang, Anpeng [1 ,2 ]
Sun, Bin [1 ]
Zhang, Jianming [1 ]
Cheng, Can [1 ]
Zhou, Jihua [1 ]
Niu, Fuan [1 ]
Luo, Zhongyong [3 ]
Yu, Luzhen [4 ]
Yu, Cui [4 ]
Dai, Yuting [1 ]
Xie, Kaizhen [1 ]
Hu, Qiyan [1 ]
Qiu, Yue [1 ]
Cao, Liming [1 ,2 ]
Chu, Huangwei [1 ,2 ]
机构
[1] Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, China
[2] Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
[3] Shanghai Agricultural Science and Technology Seed Co., Ltd., Shanghai, China
[4] Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
关键词
D O I
暂无
中图分类号
R318.08 [生物材料学]; Q [生物科学];
学科分类号
07 ; 0710 ; 0805 ; 080501 ; 080502 ; 09 ;
摘要
Aphelenchoides besseyi (A. besseyi), a seed-borne parasitic nematode, is the causal agent of rice white tip disease (RWTD), which may result in a drastic loss of rice yield. Seed treatments are currently considered to be the most effective means of preventing the spread of RWTD. Therefore, the rapid, highly specific, and accurate detection of A. besseyi from rice seeds is crucial for the surveillance, prevention, and control of RWTD. Here, we describe a novel detection assay that combines recombinase polymerase amplification (RPA) and CRISPR/Cas12a to detect A. besseyi (termed RPA-Cas12a-Ab), with a low limit of detection (LOD) of 1 copy/μl of plasmid or 1:107 diluted DNA extracted from individual nematodes. To improve the user-friendliness, lateral flow strip assay (LFA) was adopted to visualize the detection result. The LOD of the RPA-Cas12a-Ab LFA assay was 1,000 copies/μl plasmid or 1:10 diluted DNA extracted from individual nematodes. The assay developed in this study was able to identify A. besseyi in 45 min with high accuracy and sensitivity without cross reaction with three closely related non-A. besseyi species. Thus, RPA-Cas12a-Ab is a rapid, sensitive, and specific detection system that requires no sophisticated equipment and shows promise for on-site surveillance of A. besseyi. Copyright © 2022 Zhang, Sun, Zhang, Cheng, Zhou, Niu, Luo, Yu, Yu, Dai, Xie, Hu, Qiu, Cao and Chu.
引用
收藏
相关论文
共 50 条
  • [1] CRISPR/Cas12a Coupled With Recombinase Polymerase Amplification for Sensitive and Specific Detection of Aphelenchoides besseyi
    Zhang, Anpeng
    Sun, Bin
    Zhang, Jianming
    Cheng, Can
    Zhou, Jihua
    Niu, Fuan
    Luo, Zhongyong
    Yu, Luzhen
    Yu, Cui
    Dai, Yuting
    Xie, Kaizhen
    Hu, Qiyan
    Qiu, Yue
    Cao, Liming
    Chu, Huangwei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [2] Sensitive and high-accuracy detection of Salmonella based on CRISPR/Cas12a combined with recombinase polymerase amplification
    Mao, X.
    Zhao, Y.
    Jiang, J.
    Du, Q.
    Tu, B.
    Li, J.
    Wang, F.
    LETTERS IN APPLIED MICROBIOLOGY, 2022, 75 (04) : 899 - 907
  • [3] CRISPR/Cas12a combined with recombinase polymerase amplification for rapid and sensitive detection of Vibrio vulnificus in one tube
    Zhang, Xue
    Guo, Bo
    Yang, Lihong
    Zhao, Chenjie
    Wang, Yue
    Tang, Yixin
    Yang, Guang
    Wang, Pei
    Gao, Song
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2023, 55 (02): : 322 - 326
  • [4] Rapid Detection of Phytophthora cambivora Using Recombinase Polymerase Amplification Combined with CRISPR/Cas12a
    Zhou, Jing
    Dai, Hanqian
    Dai, Tingting
    Liu, Tingli
    FORESTS, 2023, 14 (11):
  • [5] Visual Detection of Vibrio parahaemolyticus using Combined CRISPR/Cas12a and Recombinase Polymerase Amplification
    JIANG Han Ji
    TAN Rong
    JIN Min
    YIN Jing
    GAO Zhi Xian
    LI Hai Bei
    SHI Dan Yang
    ZHOU Shu Qing
    CHEN Tian Jiao
    YANG Dong
    LI Jun Wen
    Biomedical and Environmental Sciences, 2022, 35 (06) : 518 - 527
  • [6] Visual Detection of Vibrio parahaemolyticus using Combined CRISPR/Cas12a and Recombinase Polymerase Amplification
    Jiang Han Ji
    Tan Rong
    Jin Min
    Yin Jing
    Gao Zhi Xian
    Li Hai Bei
    Shi Dan Yang
    Zhou Shu Qing
    Chen Tian Jiao
    Yang Dong
    Li Jun Wen
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES, 2022, 35 (06) : 518 - 527
  • [7] CRISPR/Cas12a Technology Combined with Recombinase Polymerase Amplification for Rapid and Portable Monkeypox Virus Detection
    Li, Feifei
    Liu, Sihua
    Luo, Boyu
    Huang, Mengqian
    Teng, Yue
    Wang, Tao
    MICROBIOLOGY SPECTRUM, 2023, 11 (03):
  • [8] Rapid and Sensitive Detection of Toxigenic Fusarium asiaticum Integrating Recombinase Polymerase Amplification, CRISPR/Cas12a, and Lateral Flow Techniques
    Zhang, Jun
    Liang, Xiaoyan
    Zhang, Hao
    Ishfaq, Shumila
    Xi, Kaifei
    Zhou, Xueping
    Yang, Xiuling
    Guo, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [9] CRISPR/Cas12a, combined with recombinase polymerase amplification (RPA) reaction for visual detection of Leishmania species
    Yang, Kai
    Bi, Mingfang
    Mo, Xiaobing
    MICROCHEMICAL JOURNAL, 2024, 207
  • [10] Sensitive and Specific Detection of Lumpy Skin Disease Virus in Cattle by CRISPR-Cas12a Fluorescent Assay Coupled with Recombinase Polymerase Amplification
    Jiang, Chuanwen
    Tao, Dagang
    Geng, Yuanchen
    Yang, Hao
    Xu, Bingrong
    Chen, Yingyu
    Hu, Changmin
    Chen, Huanchun
    Xie, Shengsong
    Guo, Aizhen
    GENES, 2022, 13 (05)