Direct reservoir property estimation based on prestack seismic inversion

被引:22
|
作者
Liu, Qian [1 ]
Dong, Ning [1 ]
Ji, Yuxin [1 ]
Chen, Tiansheng [1 ]
机构
[1] SINOPEC, Petr Explorat & Prod Res Inst, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
Reservoir property; Direct estimation; Rock physics model; Prestack inversion; Bayesian theory; ROCK-PHYSICS; BAYESIAN INVERSION; PREDICTION; POROSITY; RESOLUTION;
D O I
10.1016/j.petrol.2018.08.028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reservoir property estimation is an essential part for reservoir characterization. Most commonly-used estimation methods are implemented in two steps, seismic inversion and rock physics inversion. However, these indirect methods may increase the uncertainty and reduce the accuracy of estimation results. In this work, we propose a Bayesian inversion approach to estimate reservoir properties directly from prestack seismic data. Firstly, by combining the reflection coefficient equation and rock physics model, we derive a P-wave reflection approximation in terms of reservoir parameters, which establishes a direct link between seismic data and reservoir properties. Model examples illustrate the accuracy of the approximation comparing to the exact reflection coefficient equation, which satisfies the requirements of the prestack seismic inversion. Then in the framework of Bayesian inversion theory, a novel inversion method is presented to estimate porosity, mineral volume and water saturation directly from prestack seismic angle gathers. Direct estimation increases the stability and decreases the uncertainty. The synthetic test demonstrates the advantage of the proposed method on the accuracy and stability over indirect methods. The real data example verifies the feasibility of the proposed method in direct reservoir property estimation.
引用
收藏
页码:1475 / 1486
页数:12
相关论文
共 50 条
  • [41] Clonal selection based intelligent parameter inversion algorithm for prestack seismic data
    Yan, Xuesong
    Li, Pengpeng
    Tang, Ke
    Gao, Liang
    Wang, Ling
    [J]. INFORMATION SCIENCES, 2020, 517 : 86 - 99
  • [42] PRESTACK INVERSION OF GROUP-FILTERED SEISMIC DATA
    HELGESEN, J
    [J]. GEOPHYSICAL PROSPECTING, 1991, 39 (03) : 313 - 336
  • [43] NONLINEAR ELASTIC INVERSION OF PRESTACK MARINE SEISMIC DATA
    ASSOUS, F
    CHALINDAR, B
    COLLINO, F
    [J]. PROCEEDINGS OF THE IEEE, 1989, 77 (06) : 877 - 890
  • [44] Stochastic reservoir characterization using prestack seismic data
    Eidsvik, J
    Avseth, P
    Omre, H
    Mukerji, T
    Mavko, G
    [J]. GEOPHYSICS, 2004, 69 (04) : 978 - 993
  • [45] Stochastic reservoir characterization using prestack seismic data
    Eidsvik, Jo
    Avseth, Per
    Omre, Henning
    Mukerji, Tapan
    Mavko, Gary
    [J]. Leading Edge, 2004, 69 (04): : 978 - 993
  • [46] Prestack seismic facies-controlled joint inversion of reservoir elastic and petrophysical parameters for sweet spot prediction
    Zhang, Sheng
    Huang, Handong
    Li, Huijie
    Wang, Gaofei
    Dong, Yinping
    Luo, Yaneng
    [J]. ENERGY EXPLORATION & EXPLOITATION, 2017, 35 (06) : 767 - 791
  • [47] Porosity estimation of a geothermal carbonate reservoir in the German Molasse Basin based on seismic amplitude inversion
    Wadas S.H.
    von Hartmann H.
    [J]. Geothermal Energy, 2022, 10 (01)
  • [48] Reservoir Modeling and Case Study Based on Seismic Inversion
    Yang, Yong
    Meng, Hai-Quan
    Bie, Ai-Fang
    Zeng, Cheng-Yi
    [J]. Jianghan Shiyou Xueyuan Xuebao/Journal of Jianghan Petroleum Institute, 2003, 25 (03): : 49 - 50
  • [49] Azimuthal Prestack Seismic Anisotropic Inversion on a Deep and Tight Carbonate Reservoir From the North Potwar Basin of Pakistan
    Zahid Afzal Durrani M.
    Rahman S.A.
    Talib M.
    Subhani G.
    Sarosh B.
    [J]. SPE Reservoir Evaluation and Engineering, 2023, 26 (04): : 1553 - 1565
  • [50] Azimuthal Prestack Seismic Anisotropic Inversion on a Deep and Tight Carbonate Reservoir From the North Potwar Basin of Pakistan
    Durrani, Muhammad Zahid Afzal
    Rahman, Syed Atif
    Talib, Maryam
    Subhani, Ghulam
    Sarosh, Bakhtawer
    [J]. SPE RESERVOIR EVALUATION & ENGINEERING, 2023, 26 (04) : 1553 - 1565