Direct reservoir property estimation based on prestack seismic inversion

被引:22
|
作者
Liu, Qian [1 ]
Dong, Ning [1 ]
Ji, Yuxin [1 ]
Chen, Tiansheng [1 ]
机构
[1] SINOPEC, Petr Explorat & Prod Res Inst, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
Reservoir property; Direct estimation; Rock physics model; Prestack inversion; Bayesian theory; ROCK-PHYSICS; BAYESIAN INVERSION; PREDICTION; POROSITY; RESOLUTION;
D O I
10.1016/j.petrol.2018.08.028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reservoir property estimation is an essential part for reservoir characterization. Most commonly-used estimation methods are implemented in two steps, seismic inversion and rock physics inversion. However, these indirect methods may increase the uncertainty and reduce the accuracy of estimation results. In this work, we propose a Bayesian inversion approach to estimate reservoir properties directly from prestack seismic data. Firstly, by combining the reflection coefficient equation and rock physics model, we derive a P-wave reflection approximation in terms of reservoir parameters, which establishes a direct link between seismic data and reservoir properties. Model examples illustrate the accuracy of the approximation comparing to the exact reflection coefficient equation, which satisfies the requirements of the prestack seismic inversion. Then in the framework of Bayesian inversion theory, a novel inversion method is presented to estimate porosity, mineral volume and water saturation directly from prestack seismic angle gathers. Direct estimation increases the stability and decreases the uncertainty. The synthetic test demonstrates the advantage of the proposed method on the accuracy and stability over indirect methods. The real data example verifies the feasibility of the proposed method in direct reservoir property estimation.
引用
收藏
页码:1475 / 1486
页数:12
相关论文
共 50 条
  • [21] Prestack seismic joint inversion of reservoir elastic and petrophysical parameters using deterministic optimization method
    Li Zhi-Yong
    Qian Feng
    Hu Guang-Min
    He Zhen-Hua
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 58 (05): : 1706 - 1716
  • [22] PRESTACK SEISMIC INVERSION BASED ON ADAPTIVE MIXED-NORM CONSTRAINTS
    Tian, Yukun
    Ma, Yanyan
    Li, Tao
    Wang, Ruo
    Chuai, Xiaoyu
    Chen, Wei
    [J]. JOURNAL OF SEISMIC EXPLORATION, 2020, 29 (02): : 139 - 157
  • [23] Multitask Weighted Adaptive Prestack Seismic Inversion
    Cheng, Jian-yong
    Yuan, San-yi
    Sun, Ao-xue
    Luo, Chun-mei
    Liu, Hao-jie
    Wang, Shang-xu
    [J]. APPLIED GEOPHYSICS, 2024,
  • [24] Pitfalls in prestack inversion of merged seismic surveys
    Verma, Sumit
    Del Moro, Yoryenys
    Marfurt, Kurt J.
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2013, 1 (01): : 7A - A9
  • [25] Wavelet transform-based prestack seismic elastic parameter inversion
    Huang, Han-Dong
    Zhang, Ru-Wei
    Meng, Xian-Jun
    Wang, Bao-Hua
    [J]. Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2008, 43 (05): : 562 - 567
  • [26] Lateral Constrained Prestack Seismic Inversion Based on Difference Angle Gathers
    Wang, Pu
    Chen, Xiaohong
    Li, Jingye
    Wang, Benfeng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (12) : 2177 - 2181
  • [27] Integration of geology, rock physics, logs, and prestack seismic data for reservoir porosity estimation
    AlMuhaidib, Abdulaziz M.
    Sen, Mrinal K.
    Toksoez, M. Nafi
    [J]. AAPG BULLETIN, 2012, 96 (07) : 1235 - 1251
  • [28] Seismic facies-controlled prestack simultaneous inversion of elastic and petrophysical parameters for favourable reservoir prediction
    Zhang, Sheng
    Huang, Handong
    Zhu, Baoheng
    Li, Huijie
    Zhang, Lihua
    [J]. EXPLORATION GEOPHYSICS, 2018, 49 (05) : 655 - 668
  • [29] Estimation of reservoir porosity based on seismic inversion results using deep learning methods
    Feng, Runhai
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 77
  • [30] Application of simultaneous prestack inversion in reservoir facies identification
    Moghanloo, H. Ghanbarnejad
    Riahi, Mohammad Ali
    Bagheri, M.
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (04) : 1376 - 1388