ISODIAMETRIC INEQUALITY IN CARNOT GROUPS

被引:5
|
作者
Rigot, Severine [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR 6621, Lab JA Dieudonne, F-06108 Nice 02, France
关键词
Isodiametric inequality; homogeneous groups; densities; MASS TRANSPORTATION; SPACES; SETS;
D O I
10.5186/aasfm.2011.3615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical isodiametric inequality in the Euclidean space says that balls maximize the volume among all sets with a given diameter. We consider in this paper the case of Carnot groups. We prove that for any non abelian Carnot group equipped with a Haar measure one can find a homogeneous distance for which this fails to hold. We also consider Carnot-Caratheodory distances and prove that this also fails for these distances as soon as there are length minimizing curves that stop to be minimizing in finite time. Next we study some connections with the comparison between Hausdorff and spherical Hausdorff measures, rectifiability and the generalized 1/2-Besicovitch conjecture, giving in particular some cases where this conjecture fails.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 50 条
  • [41] Convex functions on Carnot groups
    Juutinen, Petri
    Lu, Guozhen
    Manfredi, Juan J.
    Stroffolini, Bianca
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (01) : 191 - 200
  • [42] Ricci curvatures in Carnot groups
    Rifford, Ludovic
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (04) : 467 - 487
  • [43] A METRIC CHARACTERIZATION OF CARNOT GROUPS
    Le Donne, Enrico
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) : 845 - 849
  • [44] Polar coordinates in Carnot groups
    Z.M. Balogh
    J.T. Tyson
    Mathematische Zeitschrift, 2002, 241 : 697 - 730
  • [45] Quasiregular maps on Carnot groups
    Heinonen, Juha
    Holopainen, Ilkka
    Journal of Geometric Analysis, 1997, 7 (01): : 109 - 148
  • [46] Polar coordinates in Carnot groups
    Balogh, ZM
    Tyson, JT
    MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (04) : 697 - 730
  • [47] Classes of Nonrigid Carnot Groups
    Ottazzi, Alessandro
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (2A) : 567 - 571
  • [48] GEOMETRIC INEQUALITIES IN CARNOT GROUPS
    Montefalcone, Francescopaolo
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 263 (01) : 171 - 206
  • [49] Subharmonic functions on Carnot groups
    Andrea Bonfiglioli
    Ermanno Lanconelli
    Mathematische Annalen, 2003, 325 : 97 - 122
  • [50] Riemannian approximation in Carnot groups
    Domokos, Andras
    Manfredi, Juan J.
    Ricciotti, Diego
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (05) : 1139 - 1154