ISODIAMETRIC INEQUALITY IN CARNOT GROUPS

被引:5
|
作者
Rigot, Severine [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR 6621, Lab JA Dieudonne, F-06108 Nice 02, France
关键词
Isodiametric inequality; homogeneous groups; densities; MASS TRANSPORTATION; SPACES; SETS;
D O I
10.5186/aasfm.2011.3615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical isodiametric inequality in the Euclidean space says that balls maximize the volume among all sets with a given diameter. We consider in this paper the case of Carnot groups. We prove that for any non abelian Carnot group equipped with a Haar measure one can find a homogeneous distance for which this fails to hold. We also consider Carnot-Caratheodory distances and prove that this also fails for these distances as soon as there are length minimizing curves that stop to be minimizing in finite time. Next we study some connections with the comparison between Hausdorff and spherical Hausdorff measures, rectifiability and the generalized 1/2-Besicovitch conjecture, giving in particular some cases where this conjecture fails.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 50 条
  • [21] Rearrangements in Carnot Groups
    Manfredi, Juan J.
    Vera de Serio, Virginia N.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (07) : 1115 - 1127
  • [22] Rearrangements in Carnot Groups
    Juan J.MANFREDI
    Virginia N.VERA DE SERIO
    Acta Mathematica Sinica,English Series, 2019, (07) : 1115 - 1127
  • [23] Rearrangements in Carnot Groups
    Juan J. Manfredi
    Virginia N. Vera de Serio
    Acta Mathematica Sinica, English Series, 2019, 35 : 1115 - 1127
  • [24] On the ∞-Laplacian on Carnot Groups
    Ferrari F.
    Forcillo N.
    Manfredi J.J.
    Journal of Mathematical Sciences, 2022, 268 (3) : 310 - 322
  • [25] Invertible Carnot Groups
    Freeman, David M.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2014, 2 (01): : 248 - 257
  • [26] Rearrangements in Carnot Groups
    Juan JMANFREDI
    Virginia NVERA DE SERIO
    ActaMathematicaSinica, 2019, 35 (07) : 1115 - 1127
  • [27] On a relative isodiametric inequality for centrally symmetric, compact, convex surfaces
    Cerdán A.
    Schnell U.
    Gomis S.S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (1): : 277 - 289
  • [28] Some interpolations and refinements of Hadamard's inequality for r-convex functions in Carnot groups
    Hwang, Dah-Yan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (02): : 287 - 297
  • [29] Fundamental solution for the Q-Laplacian and sharp Moser-Trudinger inequality in Carnot groups
    Balogh, ZM
    Manfredi, JJ
    Tyson, JT
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 204 (01) : 35 - 49
  • [30] A Primer on Carnot Groups: Homogenous Groups, Carnot-Caratheodory Spaces, and Regularity of Their Isometries
    Le Donne, Enrico
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01): : 116 - 137