KGTuner: Efficient Hyper-parameter Search for Knowledge Graph Learning

被引:0
|
作者
Zhang, Yongqi [1 ]
Zhou, Zhanke [1 ,2 ]
Yao, Quanming [3 ]
Li, Yong [3 ]
机构
[1] 4Paradigm Inc, Beijing, Peoples R China
[2] Hong Kong Baptist Univ, Hong Kong, Peoples R China
[3] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While hyper-parameters (HPs) are important for knowledge graph (KG) learning, existing methods fail to search them efficiently. To solve this problem, we first analyze the properties of different HPs and measure the transfer ability from small subgraph to the full graph. Based on the analysis, we propose an efficient two-stage search algorithm KGTuner, which efficiently explores HP configurations on small subgraph at the first stage and transfers the top-performed configurations for fine-tuning on the large full graph at the second stage. Experiments show that our method can consistently find better HPs than the baseline algorithms within the same time budget, which achieves 9.1% average relative improvement for four embedding models on the large-scale KGs in open graph benchmark.
引用
收藏
页码:2715 / 2735
页数:21
相关论文
共 50 条
  • [41] Hyper-Parameter Optimization Using MARS Surrogate for Machine-Learning Algorithms
    Li, Yangyang
    Liu, Guangyuan
    Lu, Gao
    Jiao, Licheng
    Marturi, Naresh
    Shang, Ronghua
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2020, 4 (03): : 287 - 297
  • [42] Research on Hyper-Parameter Optimization of Activity Recognition Algorithm Based on Improved Cuckoo Search
    Tong, Yu
    Yu, Bo
    ENTROPY, 2022, 24 (06)
  • [43] Hyper-parameter optimization of deep learning model for prediction of Parkinson's disease
    Kaur, Sukhpal
    Aggarwal, Himanshu
    Rani, Rinkle
    MACHINE VISION AND APPLICATIONS, 2020, 31 (05)
  • [44] A review of automatic selection methods for machine learning algorithms and hyper-parameter values
    Luo, Gang
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2016, 5 (01):
  • [45] Gradient Hyper-parameter Optimization for Manifold Regularization
    Becker, Cassiano O.
    Ferreira, Paulo A. V.
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 339 - 344
  • [46] Cultural Events Classification using Hyper-parameter Optimization of Deep Learning Technique
    Feng Zhipeng
    Gani, Hamdan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 603 - 609
  • [47] A GPU Scheduling Framework to Accelerate Hyper-Parameter Optimization in Deep Learning Clusters
    Son, Jaewon
    Yoo, Yonghyuk
    Kim, Khu-rai
    Kim, Youngjae
    Lee, Kwonyong
    Park, Sungyong
    ELECTRONICS, 2021, 10 (03) : 1 - 15
  • [48] Hyper-parameter Tuning for Progressive Learning and its Application to Network Cyber Security
    Karn, Rupesh Raj
    Ziegler, Matthew
    Jung, Jinwook
    Elfadel, Ibrahim M.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1220 - 1224
  • [49] Total Variation with Automatic Hyper-Parameter Estimation
    Nascimento, Jacinto
    Sanches, Joao
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 443 - +
  • [50] Hyper-parameter optimization of deep learning model for prediction of Parkinson’s disease
    Sukhpal Kaur
    Himanshu Aggarwal
    Rinkle Rani
    Machine Vision and Applications, 2020, 31