Hyper-Parameter Optimization Using MARS Surrogate for Machine-Learning Algorithms

被引:18
|
作者
Li, Yangyang [1 ]
Liu, Guangyuan [1 ]
Lu, Gao [1 ]
Jiao, Licheng [1 ]
Marturi, Naresh [2 ]
Shang, Ronghua [1 ]
机构
[1] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Sch Artificial Intelligence,Joint Int Res Lab Int, Minist Educ,Key Lab Intelligent Percept & Image U, Xian 710071, Peoples R China
[2] Univ Birmingham, Extreme Robot Lab, Edgbaston B15 2TT, England
基金
中国国家自然科学基金;
关键词
Hyper-parameter optimization; MARS; dynamic coordinate search; machine learning; GLOBAL OPTIMIZATION; EVOLUTIONARY; REGRESSION; SEARCH;
D O I
10.1109/TETCI.2019.2918509
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatically searching for optimal hyper parameters is of crucial importance for applying machine learning algorithms in practice. However, there are concerns regarding the tradeoff between efficiency and effectiveness of current approaches when faced with the expensive function evaluations. In this paper, a novel efficient hyper-parameter optimization algorithm is proposed (called MARSAOP), in which multivariate spline functions are used as surrogate and dynamic coordinate search approach is employed to generate the candidate points. Empirical studies on benchmark problems and machine-learning models (e.g.,SVM, RE, and NN) demonstrate that the proposed algorithm is able to find relatively high-quality solutions for benchmark problems and excellent hyper-parameter configurations for machine-learning models using a limited computational budget (few function evaluations).
引用
收藏
页码:287 / 297
页数:11
相关论文
共 50 条
  • [1] Hyper-parameter Optimization Using Continuation Algorithms
    Rojas-Delgado, Jairo
    Jimenez, J. A.
    Bello, Rafael
    Lozano, J. A.
    [J]. METAHEURISTICS, MIC 2022, 2023, 13838 : 365 - 377
  • [2] Hyper-parameter Optimization for Machine-Learning based Electromagnetic Side-Channel Analysis
    Mukhtar, Naila
    Kong, Yinan
    [J]. 2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [3] Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library
    Zhang, Jun
    Wang, Qin
    Shen, Weifeng
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 52 : 115 - 125
  • [4] Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library
    Jun Zhang
    Qin Wang
    Weifeng Shen
    [J]. Chinese Journal of Chemical Engineering, 2022, 52 (12) : 115 - 125
  • [5] APPLICATION OF A HYPER-PARAMETER OPTIMIZATION ALGORITHM USING MARS SURROGATE FOR DEEP POLSAR IMAGE CLASSIFICATION MODELS
    Liu, Guangyuan
    Li, Yangyang
    Jiao, Licheng
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2591 - 2594
  • [6] Hyper-Parameter Optimization in Support Vector Machine on Unbalanced Datasets Using Genetic Algorithms
    Guido, Rosita
    Groccia, Maria Carmela
    Conforti, Domenico
    [J]. OPTIMIZATION IN ARTIFICIAL INTELLIGENCE AND DATA SCIENCES, 2022, : 37 - 47
  • [7] Federated learning with hyper-parameter optimization
    Kundroo, Majid
    Kim, Taehong
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (09)
  • [8] A new hyper-parameter optimization method for machine learning in fault classification
    Ye, Xingchen
    Gao, Liang
    Li, Xinyu
    Wen, Long
    [J]. APPLIED INTELLIGENCE, 2023, 53 (11) : 14182 - 14200
  • [9] Early prediction model for coronary heart disease using genetic algorithms, hyper-parameter optimization and machine learning techniques
    Priya, R. L.
    Jinny, S. Vinila
    Mate, Yash Vijay
    [J]. HEALTH AND TECHNOLOGY, 2021, 11 (01) : 63 - 73
  • [10] Early prediction model for coronary heart disease using genetic algorithms, hyper-parameter optimization and machine learning techniques
    Priya R. L
    S. Vinila Jinny
    Yash Vijay Mate
    [J]. Health and Technology, 2021, 11 : 63 - 73