Quantum groups and quantum shuffles

被引:178
|
作者
Rosso, M
机构
[1] Univ Strasbourg 1, IRMA, F-67084 Strasbourg, France
[2] Inst Univ France, F-67084 Strasbourg, France
关键词
D O I
10.1007/s002220050249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U-q(+) be the "upper triangular part" of the quantized enveloping algebra associated with a symetrizable Cartan matrix. We show that U-q(+) is isomorphic las a Hopf algebra) to the subalgebra generated by elements of degree 0 and 1 of the cotensor Hopf algebra associated with a suitable Hopf bimodule on the group algebra of Z(n). This method gives supersymetric as well as multiparametric versions of U-q(+) in a uniform way (for a suitable choice of the Hopf bimodule). We give a classification result about the Hopf algebras which can be obtained in this way, under a reasonable growth condition. We also show how the general formalism allows to reconstruct higher rank quantized enveloping algebras from U(q)sl(2) and a suitable irreducible finite dimensional representation.
引用
收藏
页码:399 / 416
页数:18
相关论文
共 50 条
  • [31] Quantum Groups as Hidden Symmetries of Quantum Impurities
    Yakaboylu, E.
    Shkolnikov, M.
    Lemeshko, M.
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)
  • [32] NOTES ON QUANTUM GROUPS AND QUANTUM DERHAM COMPLEXES
    MANIN, YI
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 92 (03) : 997 - 1019
  • [34] C*-algebraic quantum groups arising from algebraic quantum groups
    Kustermans, J
    Van Daele, A
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (08) : 1067 - 1139
  • [35] Quantum Groups, Quantum Foundations and Quantum Information: a Festschrift for Tony Sudbery
    Weigert, Stefan
    QUANTUM GROUPS, QUANTUM FOUNDATIONS, AND QUANTUM INFORMATION: A FESTSCHRIFT FOR TONY SUDBERY, 2010, 254
  • [36] INHOMOGENEOUS QUANTUM GROUPS
    SCHLIEKER, M
    WEICH, W
    WEIXLER, R
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 53 (01): : 79 - 82
  • [37] Bornological quantum groups
    Voigt, Christian
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 235 (01) : 93 - 135
  • [38] QUANTUM GROUPS AND DUALITY
    GOOTMAN, EC
    LAZAR, AJ
    REVIEWS IN MATHEMATICAL PHYSICS, 1993, 5 (02) : 417 - 451
  • [39] Quantum Chevalley groups
    Berenstein, Arkady
    Greenstein, Jacob
    NONCOMMUTATIVE BIRATIONAL GEOMETRY, REPRESENTATIONS AND COMBINATORICS, 2013, 592 : 71 - 102
  • [40] Subgroups of quantum groups
    Christodoulou, Georgia
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (02): : 509 - 533