Quantum groups and quantum shuffles

被引:178
|
作者
Rosso, M
机构
[1] Univ Strasbourg 1, IRMA, F-67084 Strasbourg, France
[2] Inst Univ France, F-67084 Strasbourg, France
关键词
D O I
10.1007/s002220050249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U-q(+) be the "upper triangular part" of the quantized enveloping algebra associated with a symetrizable Cartan matrix. We show that U-q(+) is isomorphic las a Hopf algebra) to the subalgebra generated by elements of degree 0 and 1 of the cotensor Hopf algebra associated with a suitable Hopf bimodule on the group algebra of Z(n). This method gives supersymetric as well as multiparametric versions of U-q(+) in a uniform way (for a suitable choice of the Hopf bimodule). We give a classification result about the Hopf algebras which can be obtained in this way, under a reasonable growth condition. We also show how the general formalism allows to reconstruct higher rank quantized enveloping algebras from U(q)sl(2) and a suitable irreducible finite dimensional representation.
引用
收藏
页码:399 / 416
页数:18
相关论文
共 50 条
  • [21] COHOMOLOGY OF QUANTUM GROUPS - THE QUANTUM DIMENSION
    PARSHALL, B
    WANG, JP
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06): : 1276 - 1298
  • [22] LANGUAGE OF QUANTUM SPACES AND QUANTUM GROUPS
    MALTSINIOTIS, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (02) : 275 - 302
  • [23] Quantum groups
    Kassel, C
    ALGEBRA AND OPERATOR THEORY, 1998, : 213 - 236
  • [24] Quantum groups and polymer quantum mechanics
    Acquaviva, G.
    Iorio, A.
    Smaldone, L.
    MODERN PHYSICS LETTERS A, 2021, 36 (32)
  • [25] QUANTUM DOUBLE AND MULTIPARAMETER QUANTUM GROUPS
    COSTANTINI, M
    VARAGNOLO, M
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (15) : 6305 - 6321
  • [26] Quantum groups with projection and extensions of locally compact quantum groups
    Kasprzak, Pawel
    Soltan, Piotr M.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (01) : 105 - 123
  • [27] Quantum isometry groups of dual of finitely generated discrete groups and quantum groups
    Goswami, Debashish
    Mandal, Arnab
    REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (03)
  • [28] Quantum groups and braid groups
    Rosso, M
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 757 - 785
  • [29] From Quantum Groups to Groups
    Kalantar, Mehrdad
    Neufang, Matthias
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (05): : 1073 - 1094
  • [30] A note on quantum subgroups of free quantum groups
    Hoshino, Mao
    Kitamura, Kan
    COMPTES RENDUS MATHEMATIQUE, 2024, 362