PySPH: A Python']Python-based Framework for Smoothed Particle Hydrodynamics

被引:22
|
作者
Ramachandran, Prabhu [1 ]
Bhosale, Aditya [1 ]
Puri, Kunal [1 ]
Negi, Pawan [1 ]
Muta, Abhinav [1 ]
Dinesh, A. [1 ]
Menon, Dileep [1 ]
Govind, Rahul [1 ]
Sanka, Suraj [1 ]
Sebastian, Amal S. [1 ]
Sen, Ananyo [1 ]
Kaushik, Rohan [1 ]
Kumar, Anshuman [1 ]
Kurapati, Vikas [1 ]
Patil, Mrinalgouda [1 ]
Tavker, Deep [1 ]
Pandey, Pankaj [1 ]
Kaushik, Chandrashekhar [1 ]
Dutt, Arkopal [1 ]
Agarwal, Arpit [1 ]
机构
[1] Indian Inst Technol, Dept Aerosp Engn, IIT Bombay, Mumbai 400076, Maharashtra, India
来源
关键词
PySPH; smoothed particle hydrodynamics; open source; !text type='Python']Python[!/text; GPU; CPU; TRANSPORT-VELOCITY FORMULATION; SPH; SIMULATION; FLOWS; MODELS;
D O I
10.1145/3460773
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
PySPH is an open-source, Python-based, framework for particle methods in general and Smoothed Particle Hydrodynamics (SPH) in particular. PySPH allows a user to define a complete SPH simulation using pure Python. High-performance code is generated from this high-level Python code and executed on either multiple cores, or on GPUs, seamlessly. It also supports distributed execution using MPI. PySPH supports a wide variety of SPH schemes and formulations. These include, incompressible and compressible fluid flow, elastic dynamics, rigid body dynamics, shallow water equations, and other problems. PySPH supports a variety of boundary conditions including mirror, periodic, solid wall, and inlet/outlet boundary conditions. The package is written to facilitate reuse and reproducibility. This article discusses the overall design of PySPH and demonstrates many of its features. Several example results are shown to demonstrate the range of features that PySPH provides.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] A Python']Python-based IRAF task parameter editor
    De la Peña, MD
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS IX, 2000, 216 : 63 - 66
  • [22] A python']python-based IRAF regression testing system
    Bushouse, H
    Simon, B
    Shukla, H
    Wyckoff, E
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XI, 2002, 281 : 129 - 131
  • [23] Alnilam: An extensible Python']Python-based job scheduler
    Kochmar, J
    Nowoczynski, P
    Scott, JR
    Sommerfield, J
    Stone, N
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, 2000, : 1247 - 1253
  • [24] Python']Python-Based TinyIPFIX in Wireless Sensor Networks
    Schiller, Eryk
    Huber, Ramon
    Stiller, Burkhard
    [J]. ELECTRONICS, 2022, 11 (03)
  • [25] Python']Python-Based Unstructured Data Retrieval System
    Zhang, Weihua
    Wang, Wei
    Zhu, Li
    Zheng, Ruiying
    Liu, Xing
    [J]. 2019 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2019, : 374 - 377
  • [26] Improving the Latency of Python']Python-based Web Applications
    Esteves, Antonio
    Fernandes, Joao
    [J]. WEBIST: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2019, : 193 - 201
  • [27] pyMBE: The Python']Python-based molecule builder for ESPResSo
    Beyer, David
    Torres, Paola B.
    Pineda, Sebastian P.
    Narambuena, Claudio F.
    Grad, Jean-Noel
    Kosovan, Peter
    Blanco, Pablo M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (02):
  • [28] Simulating Evolutionary Games: A Python']Python-Based Introduction
    Isaac, Alan G.
    [J]. JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2008, 11 (03):
  • [29] A python']python-based multicriteria portfolio selection DSS
    Xidonas, Panos
    Doukas, Haris
    Sarmas, Elissaios
    [J]. RAIRO-OPERATIONS RESEARCH, 2021, 55 : S3009 - S3034
  • [30] Python']Python-Based TinyIPFIX in Wireless Sensor Networks
    Schiller, Eryk
    Huber, Ramon
    Stiller, Burkhard
    [J]. PROCEEDINGS OF THE IEEE 46TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2021), 2021, : 431 - 434