Alnilam: An extensible Python']Python-based job scheduler

被引:0
|
作者
Kochmar, J [1 ]
Nowoczynski, P [1 ]
Scott, JR [1 ]
Sommerfield, J [1 ]
Stone, N [1 ]
机构
[1] Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA
关键词
clusters; job scheduling; !text type='Python']Python[!/text;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Alnilam, named for a star in the Orion constellation, is a Python-based job scheduler for clusters and SMPs. It relies heavily on Python's Object model and readily available language support modules. This paper describes the design goals of Alnilam, and lessons learned in developing and testing it on CLAN, PSC's dual boot Linux/NT cluster, as well as future directions and software availability.
引用
收藏
页码:1247 / 1253
页数:7
相关论文
共 50 条
  • [1] SBcoyote: An extensible Python']Python-based reaction editor and viewer
    Xu, Jin
    Geng, Gary
    Nguyen, Nhan D.
    Perena-Cortes, Carmen
    Samuels, Claire
    Sauro, Herbert M.
    [J]. BIOSYSTEMS, 2023, 232
  • [2] Tellurium: An extensible python']python-based modeling environment for systems and synthetic biology
    Choi, Kiri
    Medley, J. Kyle
    Koenig, Matthias
    Stocking, Kaylene
    Smith, Lucian
    Gu, Stanley
    Sauro, Herbert M.
    [J]. BIOSYSTEMS, 2018, 171 : 74 - 79
  • [3] QuaPy: A Python']Python-Based Framework for Quantification
    Moreo, Alejandro
    Esuli, Andrea
    Sebastiani, Fabrizio
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4534 - 4543
  • [4] LIVVkit: An extensible, python']python-based, land ice verification and validation toolkit for ice sheet models
    Kennedy, Joseph H.
    Bennett, Andrew R.
    Evans, Katherine J.
    Price, Stephen
    Hoffman, Matthew
    Lipscomb, William H.
    Fyke, Jeremy
    Vargo, Lauren
    Boghozian, Adrianna
    Norman, Matthew
    Worley, Patrick H.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2017, 9 (02) : 854 - 869
  • [5] Python']Python-based In Situ Analysis and Visualization
    Loring, Burlen
    Myers, Andrew
    Camp, David
    Bethel, E. Wes
    [J]. PROCEEDINGS OF IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION (ISAV 2018), 2018, : 19 - 24
  • [6] PACO: Python']Python-Based Atmospheric Correction
    de los Reyes, Raquel
    Langheinrich, Maximilian
    Schwind, Peter
    Richter, Rudolf
    Pflug, Bringfried
    Bachmann, Martin
    Mueller, Rupert
    Carmona, Emiliano
    Zekoll, Viktoria
    Reinartz, Peter
    [J]. SENSORS, 2020, 20 (05)
  • [7] A Python']Python-based undergraduate course in computational macroeconomics
    Jenkins, Brian C.
    [J]. JOURNAL OF ECONOMIC EDUCATION, 2022, 53 (02): : 126 - 140
  • [8] An Introduction to Programming for Bioscientists: A Python']Python-Based Primer
    Ekmekci, Berk
    McAnany, Charles E.
    Mura, Cameron
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (06)
  • [9] PYSCF: the Python']Python-based simulations of chemistry framework
    Sun, Qiming
    Berkelbach, Timothy C.
    Blunt, Nick S.
    Booth, George H.
    Guo, Sheng
    Li, Zhendong
    Liu, Junzi
    McClain, James D.
    Sayfutyarova, Elvira R.
    Sharma, Sandeep
    Wouters, Sebastian
    Chan, Garnet Kin-Lic
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (01)
  • [10] Improving the Latency of Python']Python-based Web Applications
    Esteves, Antonio
    Fernandes, Joao
    [J]. WEBIST: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2019, : 193 - 201