Identification of discrete linear system in state space form using neural network

被引:0
|
作者
Wang, D [1 ]
Zilouchian, A [1 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn, Boca Raton, FL 33431 USA
关键词
D O I
10.1109/ICCDCS.1998.705860
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel supervised recurrent neural network architecture for identification of discrete linear system is introduced. The proposed neural network architecture directly provides the state space parameters of a given system based upon input-output data available. The simulation experiments demonstrate the effectiveness of the proposed method for both single input single output (SISO) and multiinput multi-output (MIMO) systems.
引用
收藏
页码:338 / 342
页数:5
相关论文
共 50 条
  • [21] Nonlinear system identification with continuous piecewise linear neural network
    Huang, Xiaolin
    Xu, Jun
    Wang, Shuning
    [J]. NEUROCOMPUTING, 2012, 77 (01) : 167 - 177
  • [22] Identification of State-space Linear Parameter-varying Models Using Artificial Neural Networks
    Bao, Yajie
    Velni, Javad Mohammadpour
    Basina, Aditya
    Shahbakhti, Mahdi
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 5286 - 5291
  • [23] A Nonlinear System Identification Method Based on Fuzzy dynamical Model and State-Space Neural Network
    Huang, Xiaobin
    Qi, Hongjing
    [J]. 2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4738 - +
  • [24] Abstraction of continuous system to discrete event system using neural network
    Jung, SH
    Kim, TG
    [J]. ENABLING TECHNOLOGY FOR SIMULATION SCIENCE, 1997, 3083 : 42 - 51
  • [25] Neural-Network-Based State Feedback Control of a Nonlinear Discrete-Time System in Nonstrict Feedback Form
    Jagannathan, Sarangapani
    He, Pingan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (12): : 2073 - 2087
  • [26] IDENTIFICATION OF LINEAR PLANTS USING STATE-SPACE MODELS
    MACIAG, C
    COOK, G
    [J]. IECON 89, VOLS 1-4: POWER ELECTRONICS - SIGNAL-PROCESSING & SIGNAL CONTROL - FACTORY AUTOMATION, EMERGING TECHNOLOGIES, 1989, : 469 - 473
  • [27] Model Identification of Space Mechanisms by Using NARX Neural Network
    Xuan, Jiajun
    Song, Xiaodong
    Zhang, Yousheng
    [J]. 2018 3RD INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC), 2018, : 94 - 98
  • [28] Linear Multivariable Identification Using Observable State Space Parameterizations
    Romano, Rodrigo Alvite
    Pait, Felipe
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1429 - 1434
  • [29] Identification of 2-D discrete systems using neural network
    Wang, DL
    Zilouchian, A
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2002, 8 (04): : 315 - 324
  • [30] Fractional Hammerstein system identification using polynomial non-linear state space model
    Hammar, Karima
    Djamah, Tounsia
    Bettayeb, Maamar
    [J]. 3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,