On the disappearance of the lowest-order instability for steep gravity waves in finite depth

被引:11
|
作者
Francius, M [1 ]
Kharif, C [1 ]
机构
[1] Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille 13, France
关键词
D O I
10.1063/1.1589012
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper extends to very large steepness the results of the linear stability analysis of two-dimensional periodic gravity waves over a bottom of uniform depth. Both subharmonic and superharmonic instabilities are investigated. For the case considered herein, it is shown how the lowest-order instability (class I) completely disappears at a critical wave steepness. These results also confirm numerically a theorem connected with the appearance of superharmonic instabilities in finite depth. (C) 2003 American Institute of Physics.
引用
收藏
页码:2445 / 2448
页数:4
相关论文
共 50 条
  • [21] Lowest-order nonstandard finite element methods for time-fractional biharmonic problem
    Mahata, Shantiram
    Nataraj, Neela
    Raymond, Jean-Pierre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 43 - 71
  • [22] Finite-element analysis of non-collinear mixing of two lowest-order antisymmetric Rayleigh-Lamb waves
    Ishii, Yosuke
    Hiraoka, Koichi
    Adachi, Tadaharu
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (01): : 53 - 68
  • [23] Postprocessing and improved accuracy of the lowest-order mixed finite element approximation for biharmonic eigenvalues
    Andreev, A
    Lazarov, R
    Racheva, M
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 613 - 620
  • [24] KAM for gravity water waves in finite depth
    Baldi, Pietro
    Berti, Massimiliano
    Haus, Emanuele
    Montalto, Riccardo
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) : 215 - 236
  • [25] STABILIZED LOWEST-ORDER FINITE ELEMENT APPROXIMATION FOR LINEAR THREE-FIELD POROELASTICITY
    Berger, Lorenz
    Bordas, Rafel
    Kay, David
    Tavener, Simon
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : A2222 - A2245
  • [26] STEEP SOLITARY WAVES IN WATER OF FINITE DEPTH WITH CONSTANT VORTICITY
    VANDENBROECK, JM
    JOURNAL OF FLUID MECHANICS, 1994, 274 : 339 - 348
  • [27] Superconvergence of the lowest-order weak Galerkin finite element method for elliptic interface problems
    Wang, Yue
    Gao, Fuzheng
    Cui, Jintao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 149 : 203 - 210
  • [28] Steep solitary waves in water of finite depth with constant vorticity
    Vanden-Broeck, J.-M.
    Journal of Fluid Mechanics, 1994, 274 : 339 - 348
  • [29] LOWEST-ORDER WEAK GALERKIN FINITE ELEMENT METHOD FOR DARCY FLOW ON CONVEX POLYGONAL MESHES
    Liu, Jiangguo
    Tavener, Simon
    Wang, Zhuoran
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : B1229 - B1252
  • [30] ON THE ASYMPTOTIC EXACTNESS OF AN ERROR ESTIMATOR FOR THE LOWEST-ORDER RAVIART-THOMAS MIXED FINITE ELEMENT
    Kim, Kwang-Yeon
    KOREAN JOURNAL OF MATHEMATICS, 2013, 21 (03): : 293 - 304