KAM for gravity water waves in finite depth

被引:0
|
作者
Baldi, Pietro [1 ]
Berti, Massimiliano [2 ]
Haus, Emanuele [1 ]
Montalto, Riccardo [3 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
[2] SISSA, Math Area, Via Bonomea 265, I-34136 Trieste, Italy
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Water waves; KAM for PDEs; quasi-periodic solutions; standing waves;
D O I
10.4171/RLM/802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the recent result in [3] concerning the existence of Cantor families of small amplitude. linearly stable, time quasi-periodic standing water wave solutions - i.e. periodic and even in the space variable x - of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure.
引用
收藏
页码:215 / 236
页数:22
相关论文
共 50 条
  • [1] An approximation for the highest gravity waves on water of finite depth
    Karabut, EA
    [J]. JOURNAL OF FLUID MECHANICS, 1998, 372 : 45 - 70
  • [2] LIMITING GRAVITY-WAVES IN WATER OF FINITE DEPTH
    WILLIAMS, JM
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 302 (1466): : 139 - 188
  • [3] Evolution of modulated gravity waves in water of finite depth
    Rollins, DK
    Shivamoggi, BK
    [J]. PHYSICA SCRIPTA, 1998, 57 (01): : 28 - 31
  • [4] Finite Depth Gravity Water Waves in Holomorphic Coordinates
    Harrop-Griffiths B.
    Ifrim M.
    Tataru D.
    [J]. Annals of PDE, 3 (1)
  • [5] Interaction of modulated gravity water waves of finite depth
    Giannoulis, Ioannis
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 3864 - 3892
  • [6] On the Quartet Resonance of Gravity Waves in Water of Finite Depth
    Xu, Dali
    Lin, Zhiliang
    Liao, Shijun
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1838 - 1841
  • [7] SOME NEW GRAVITY-WAVES IN WATER OF FINITE DEPTH
    VANDENBROECK, JM
    [J]. PHYSICS OF FLUIDS, 1983, 26 (09) : 2385 - 2387
  • [8] Bounds for Arbitrary Steady Gravity Waves on Water of Finite Depth
    Vladimir Kozlov
    Nikolay Kuznetsov
    [J]. Journal of Mathematical Fluid Mechanics, 2009, 11
  • [9] Almost-highest gravity waves on water of finite depth
    Maklakov, DV
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 : 67 - 93
  • [10] Bounds for Arbitrary Steady Gravity Waves on Water of Finite Depth
    Kozlov, Vladimir
    Kuznetsov, Nikolay
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (03) : 325 - 347