KAM for gravity water waves in finite depth

被引:0
|
作者
Baldi, Pietro [1 ]
Berti, Massimiliano [2 ]
Haus, Emanuele [1 ]
Montalto, Riccardo [3 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
[2] SISSA, Math Area, Via Bonomea 265, I-34136 Trieste, Italy
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Water waves; KAM for PDEs; quasi-periodic solutions; standing waves;
D O I
10.4171/RLM/802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the recent result in [3] concerning the existence of Cantor families of small amplitude. linearly stable, time quasi-periodic standing water wave solutions - i.e. periodic and even in the space variable x - of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure.
引用
收藏
页码:215 / 236
页数:22
相关论文
共 50 条
  • [41] Capillary-gravity solitary waves on water of finite depth interacting with a linear shear current
    Gao, T.
    Milewski, P. A.
    Wang, Z.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2021, 147 (03) : 1036 - 1057
  • [42] Propagation of Acoustic Gravity Waves in a Finite Depth Water Over a Magnetoelastic Half-Space
    Paul, Sandip
    De, Soumen
    Sarkar, Nantu
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS, ICOVP 2023, 2024, : 1 - 9
  • [43] Stability of gravity-capillary waves generated by a moving pressure disturbance in water of finite depth
    Grimshaw, Roger
    Maleewong, Montri
    Asavanant, Jack
    [J]. PHYSICS OF FLUIDS, 2009, 21 (08)
  • [44] A high-order nonlinear envelope equation for gravity waves in finite-depth water
    Slunyaev, AV
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2005, 101 (05) : 926 - 941
  • [45] Babenko's Equation for Periodic Gravity Waves on Water of Finite Depth: Derivation and Numerical Solution
    Kuznetsov, Nikolay
    Dinvay, Evgueni
    [J]. WATER WAVES, 2019, 1 (01) : 41 - 70
  • [46] Babenko’s Equation for Periodic Gravity Waves on Water of Finite Depth: Derivation and Numerical Solution
    Nikolay Kuznetsov
    Evgueni Dinvay
    [J]. Water Waves, 2019, 1 : 41 - 70
  • [47] Linear-shear-current modified Schrodinger equation for gravity waves in finite water depth
    Liao, B.
    Dong, G.
    Ma, Y.
    Gao, J. L.
    [J]. PHYSICAL REVIEW E, 2017, 96 (04)
  • [48] Stability of steady gravity waves generated by a moving localised pressure disturbance in water of finite depth
    Grimshaw, Roger
    Maleewong, Montri
    [J]. PHYSICS OF FLUIDS, 2013, 25 (07)
  • [49] On the superharmonic instability of surface gravity waves on fluid of finite depth
    Kataoka, T
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 547 : 175 - 184
  • [50] Wavemaker theories for acoustic–gravity waves over a finite depth
    Miao Tian
    Usama Kadri
    [J]. Journal of Engineering Mathematics, 2018, 108 : 25 - 35