Barrierless Switching between a Liquid and Superheated Solid Catalyst during Nanowire Growth

被引:7
|
作者
Pinion, Christopher W. [1 ]
Hill, David J. [1 ]
Christesen, Joseph D. [1 ]
McBride, James R. [2 ]
Cahoon, James F. [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Chem, Chapel Hill, NC 27599 USA
[2] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2016年 / 7卷 / 20期
基金
美国国家科学基金会;
关键词
SILICON NANOWIRES; TEMPERATURE; HETEROJUNCTIONS; NANOCRYSTALS; SURFACE; ABRUPT;
D O I
10.1021/acs.jpclett.6b01918
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Knowledge of nucleation and growth mechanisms is essential for the synthesis of nanomaterials, such as semiconductor nanowires, with shapes and compositions precisely engineered for technological applications. Nanowires are conventionally grown by the seemingly well-understood vapor liquid solid mechanism, which uses a liquid alloy as the catalyst for growth. However, we show that it is possible to instantaneously and reversibly switch the phase of the catalyst between a liquid and superheated solid state under isothermal conditions above the eutectic temperature. The solid catalyst induces a vapor solid solid growth mechanism, which provides atomic-level control of dopant atoms in the nanowire. The switching effect cannot be predicted from equilibrium phase diagrams but can be explained by the dominant role of the catalyst surface in modulating the kinetics and thermodynamics of phase behavior. The effect should be general to metal-catalyzed nanowire growth and highlights the unexpected yet technologically relevant nonequilibrium effects that can emerge in the growth of nanoscale systems.
引用
收藏
页码:4236 / 4242
页数:7
相关论文
共 50 条
  • [41] Fabrication of individually seeded nanowire arrays by vapour-liquid-solid growth
    Mårtensson, T
    Borgström, M
    Seifert, W
    Ohlsson, BJ
    Samuelson, L
    NANOTECHNOLOGY, 2003, 14 (12) : 1255 - 1258
  • [42] Energetics and kinetics of monolayer formation in vapor-liquid-solid nanowire growth
    Glas, Frank
    Dubrovskii, Vladimir G.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (08)
  • [43] Atomic-Scale Choreography of Vapor-Liquid-Solid Nanowire Growth
    Ek, Martin
    Filler, Michael A.
    ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (01) : 118 - 126
  • [44] Post-nucleation evolution of the liquid-solid interface in nanowire growth
    Maliakkal, Carina B.
    Jacobsson, Daniel
    Tornberg, Marcus
    Dick, Kimberly A.
    NANOTECHNOLOGY, 2022, 33 (10)
  • [45] Influence of precursor feeding rate on vapor-liquid-solid nanowire growth
    Yuan, Guangbi
    Liu, Xiaohua
    He, Weidong
    Wang, Dunwei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (02): : 399 - 402
  • [46] Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes
    Golovin, A.A.
    Davis, S.H.
    Voorhees, P.W.
    Journal of Applied Physics, 2008, 104 (07):
  • [47] Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism
    Mohammad, S. Noor
    NANO LETTERS, 2008, 8 (05) : 1532 - 1538
  • [48] Alternate InP synthesis with aminophosphines: solution-liquid-solid nanowire growth
    Larson, Helen C.
    Lin, Zhixing
    Baneyx, Francois
    Cossairt, Brandi M.
    NANOSCALE, 2025, 17 (11) : 6593 - 6603
  • [49] Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes
    Golovin, A. A.
    Davis, S. H.
    Voorhees, P. W.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)
  • [50] Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst
    Xu, Kun
    Ding, Hui
    Jia, Kaicheng
    Lu, Xiuli
    Chen, Pengzuo
    Zhou, Tianpei
    Cheng, Han
    Liu, Si
    Wu, Changzheng
    Xie, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) : 1710 - 1713