Barrierless Switching between a Liquid and Superheated Solid Catalyst during Nanowire Growth

被引:7
|
作者
Pinion, Christopher W. [1 ]
Hill, David J. [1 ]
Christesen, Joseph D. [1 ]
McBride, James R. [2 ]
Cahoon, James F. [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Chem, Chapel Hill, NC 27599 USA
[2] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2016年 / 7卷 / 20期
基金
美国国家科学基金会;
关键词
SILICON NANOWIRES; TEMPERATURE; HETEROJUNCTIONS; NANOCRYSTALS; SURFACE; ABRUPT;
D O I
10.1021/acs.jpclett.6b01918
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Knowledge of nucleation and growth mechanisms is essential for the synthesis of nanomaterials, such as semiconductor nanowires, with shapes and compositions precisely engineered for technological applications. Nanowires are conventionally grown by the seemingly well-understood vapor liquid solid mechanism, which uses a liquid alloy as the catalyst for growth. However, we show that it is possible to instantaneously and reversibly switch the phase of the catalyst between a liquid and superheated solid state under isothermal conditions above the eutectic temperature. The solid catalyst induces a vapor solid solid growth mechanism, which provides atomic-level control of dopant atoms in the nanowire. The switching effect cannot be predicted from equilibrium phase diagrams but can be explained by the dominant role of the catalyst surface in modulating the kinetics and thermodynamics of phase behavior. The effect should be general to metal-catalyzed nanowire growth and highlights the unexpected yet technologically relevant nonequilibrium effects that can emerge in the growth of nanoscale systems.
引用
收藏
页码:4236 / 4242
页数:7
相关论文
共 50 条
  • [21] Scenarios of stable Vapor→Liquid Droplet→Solid Nanowire growth
    Nebol'sin, Valery A.
    Dunaev, Alexander I.
    Tatarenkov, Alexander E.
    Shmakova, Svetlana S.
    JOURNAL OF CRYSTAL GROWTH, 2016, 450 : 207 - 214
  • [22] Liquid droplet dynamics and complex morphologies in vapor–liquid–solid nanowire growth
    E. J. Schwalbach
    S. H. Davis
    P. W. Voorhees
    D. Wheeler
    J. A. Warren
    Journal of Materials Research, 2011, 26 : 2186 - 2198
  • [23] Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy
    Dubrovskii, VG
    Sibirev, NV
    Cirlin, GE
    Harmand, JC
    Ustinov, VM
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [24] Liquid droplet dynamics and complex morphologies in vapor-liquid-solid nanowire growth
    Schwalbach, E. J.
    Davis, S. H.
    Voorhees, P. W.
    Wheeler, D.
    Warren, J. A.
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (17) : 2186 - 2198
  • [25] Influence of precursor feeding rate on vapor–liquid–solid nanowire growth
    Guangbi Yuan
    Xiaohua Liu
    Weidong He
    Dunwei Wang
    Applied Physics A, 2009, 96 : 399 - 402
  • [26] A New Understanding of the Vapor-Liquid-Solid Mechanism of Nanowire Growth
    Nebol'sin, V. A.
    Vorob'ev, A. Yu.
    Swaikat, N.
    INORGANIC MATERIALS, 2020, 56 (04) : 346 - 352
  • [27] Analysis of bubble growth and motion dynamics in superheated liquid during flash evaporation
    Hao, Liang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 151
  • [28] The growth of vapour bubble in a superheated liquid between two phase turbulent flow
    Mohammadein, S. A.
    Abu-Bakr, A. F.
    CANADIAN JOURNAL OF PHYSICS, 2010, 88 (05) : 317 - 324
  • [29] Evidence of a melt like supercooled liquid during a solid to liquid transition of titanium nanowire
    Hui, L
    Wang, BL
    Wang, JL
    Wang, GH
    CHEMICAL PHYSICS LETTERS, 2004, 399 (1-3) : 20 - 25
  • [30] Kinetics of germanium nanowire growth by the vapor-solid-solid mechanism with a Ni-based catalyst
    Thombare, Shruti V.
    Marshall, Ann F.
    McIntyre, Paul C.
    APL MATERIALS, 2013, 1 (06):