Mode I interlaminar fracture toughness of carbon-epoxy coupons with embedded ceramic sensors

被引:9
|
作者
Torres, Mauricio [1 ]
Tellez, Ricardo A. [2 ]
Hernandez, Hilario [3 ]
Camps, Thierry [4 ]
机构
[1] Natl Council Sci & Technol CONACYT, Ctr Engn & Ind Dev CIDESI, Queretaro, Mexico
[2] Cranfield Univ, Sch Aerosp, Cranfield, Beds, England
[3] Inst Politecn Nacl, ESIME UP Ticoman, Mexico City, DF, Mexico
[4] Univ Fed Toulouse Midi Pyrenees, LAAS, Toulouse, France
关键词
carbon fibers; delamination; fractography; fracture toughness; COMPOSITE STRUCTURES; MONITORING PATCH; PREDICTION; GROWTH; BEHAVIOR;
D O I
10.1002/adv.21905
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study analyses the mechanical and crack growth behavior of woven carbon fiber reinforced plastics (CPRF) with embedded ceramic sensors. The material studied here is 3K-70-P carbon fiber plain weave with EPOLAM 2015 (R) epoxy resin. The composite is manufactured with vacuum bagging procedure. Later on, the composite Mode I interlaminar fracture toughness (G(IC)) is calculated by means of double cantilever beam tests (DCB) for two layout configurations [0/90] and [+/- 45] with and without embedded sensors. Results give an initial approach of the fracture behavior of an instrumented composite facing an interlaminar crack. The interlaminar fracture toughness for the instrumented specimens is lower compared to the noninstrumented coupons. The presence of the sensor and its wire connection has a considerable impact on the damage tolerance of the woven composite, where the sensors surroundings seem to be the more likely region to be affected by an interlaminar fracture.
引用
收藏
页码:2294 / 2302
页数:9
相关论文
共 50 条
  • [31] Mode I and Mode II interlaminar fracture toughness of glass-cloth/epoxy laminates at cryogenic temperatures
    Shindo, Y
    Horiguchi, K
    Kumagai, S
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS 48A AND B, 2002, 614 : 245 - 252
  • [32] Thickness dependence of mode I interlaminar fracture toughness in a carbon fiber thermosetting composite
    Kravchenko, Oleksandr G.
    Kravchenko, Sergii G.
    Sun, Chin-Teh
    COMPOSITE STRUCTURES, 2017, 160 : 538 - 546
  • [33] Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites
    Shin, Yong Chul
    Lee, Woo Il
    Kim, Han Sang
    COMPOSITE STRUCTURES, 2020, 236 (236)
  • [34] CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness
    Eskizeybek, Volkan
    Yar, Adem
    Avci, Ahmet
    COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 157 : 30 - 39
  • [35] The distinctiveness of measuring interlaminar fracture toughness by the mode I method
    Dordevic, Isidor
    Gordic, Milan
    Pesikan, Danijela
    Stevanovic, Momcilo
    HEMIJSKA INDUSTRIJA, 2007, 61 (02) : 79 - 82
  • [36] Mode I interlaminar fracture toughness behavior and mechanisms of bamboo
    Chen, Qi
    Dai, Chunping
    Fang, Changhua
    Chen, Meiling
    Zhang, Shuqin
    Liu, Rong
    Liu, Xianmiao
    Fei, Benhua
    MATERIALS & DESIGN, 2019, 183
  • [37] The toughness contribution of bamboo node to the Mode I interlaminar fracture toughness of bamboo
    Fuli Wang
    Zhuoping Shao
    Yijun Wu
    Dong Wu
    Wood Science and Technology, 2014, 48 : 1257 - 1268
  • [38] The toughness contribution of bamboo node to the Mode I interlaminar fracture toughness of bamboo
    Wang, Fuli
    Shao, Zhuoping
    Wu, Yijun
    Wu, Dong
    WOOD SCIENCE AND TECHNOLOGY, 2014, 48 (06) : 1257 - 1268
  • [39] The influence of hydrostatic pressure on the interlaminar fracture toughness of carbon/epoxy composites
    Cartié, D
    Davies, P
    Peleau, M
    Partridge, IK
    COMPOSITES PART B-ENGINEERING, 2006, 37 (4-5) : 292 - 300
  • [40] Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer
    Arai, Masahiro
    Noro, Yukihiro
    Sugimoto, Koh-Ichi
    Endo, Morinobu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) : 516 - 525