Lorentzian geometry for detecting qubit entanglement

被引:2
|
作者
Samuel, Joseph [1 ]
Shivam, Kumar [1 ]
Sinha, Supurna [1 ]
机构
[1] Raman Res Inst, Bangalore 560080, Karnataka, India
关键词
Quantum entanglement; Qubits; Lorentzian geometry; Relativity and energy conditions; SEPARABILITY;
D O I
10.1016/j.aop.2018.07.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a new approach based on Lorentzian geometry to detect qubit entanglement. The treatment is based physically, on the causal structure of Minkowski spacetime, and mathematically, on a Lorentzian Singular Value Decomposition. A surprising feature is the natural emergence of "Energy conditions" used in Relativity. All states satisfy a "Dominant Energy Condition" (DEC) and separable states satisfy the Strong Energy Condition(SEC), while entangled states violate the SEC. We thus propose a test for two qubit entanglement which is an alternative to the positive partial transpose (PPT) test. This test is based on the partial Lorentz transformation (PLT) on individual qubits. Apart from testing for entanglement, our approach also enables us to construct a separable form for the density matrix in those cases where it exists. Our approach leads to a simple graphical three dimensional representation of the state space which shows the entangled states within the set of all states. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 50 条
  • [1] The geometry of multi-qubit entanglement
    Iwai, Toshihiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (40) : 12161 - 12184
  • [2] Entanglement of three-qubit geometry
    Brody, Dorje C.
    Gustavsson, Anna C. T.
    Hughston, Lane P.
    THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY - CONTRIBUTED PAPERS, 2007, 67
  • [3] The role of phases in detecting three-qubit entanglement
    Han, Kyung Hoon
    Kye, Seung-Hyeok
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
  • [4] On the geometry of a class of N-qubit entanglement monotones
    Lévay, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41): : 9075 - 9085
  • [5] Geometry of the three-qubit state, entanglement and division algebras
    Bernevig, BA
    Chen, HD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30): : 8325 - 8339
  • [6] Geometry and Entanglement of Two-Qubit States in the Quantum Probabilistic Representation
    Alberto Lopez-Saldivar, Julio
    Castanos, Octavio
    Nahmad-Achar, Eduardo
    Lopez-Pena, Ramon
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    ENTROPY, 2018, 20 (09)
  • [7] Geometry of distributive multiparty entanglement in 4-qubit hypergraph states
    Sarkar, Ramita
    Banerjee, Shreya
    Bag, Subhasish
    Panigrahi, Prasanta K.
    IET QUANTUM COMMUNICATION, 2022, 3 (01): : 72 - 84
  • [8] Geometry of three-qubit entanglement -: art. no. 012334
    Lévay, P
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [9] Statistical Lorentzian geometry and the closeness of Lorentzian manifolds
    Bombelli, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 6944 - 6958
  • [10] An Invitation to Lorentzian Geometry
    Müller O.
    Sánchez M.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2014, 115 (3-4) : 153 - 183