Purifying Deep Boltzmann Machines for Thermal Quantum States

被引:25
|
作者
Nomura, Yusuke [1 ]
Yoshioka, Nobuyuki [2 ,3 ]
Nori, Franco [3 ,4 ,5 ]
机构
[1] RIKEN, Ctr Emergent Matter Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[2] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[3] RIKEN, Cluster Pioneering Res CPR, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[4] RIKEN, Ctr Quantum Comp RQC, Wako, Saitama 3510198, Japan
[5] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构;
关键词
MONTE-CARLO; FRUSTRATION; SYSTEMS;
D O I
10.1103/PhysRevLett.127.060601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop two cutting-edge approaches to construct deep neural networks representing the purified finite-temperature states of quantum many-body systems. Both methods commonly aim to represent the Gibbs state by a highly expressive neural-network wave function, exemplifying the idea of purification. The first method is an entirely deterministic approach to generate deep Boltzmann machines representing the purified Gibbs state exactly. This strongly assures the remarkable flexibility of the ansatz which can fully exploit the quantum-to-classical mapping. The second method employs stochastic sampling to optimize the network parameters such that the imaginary time evolution is well approximated within the expressibility of neural networks. Numerical demonstrations for transverse-field Ising models and Heisenberg models show that our methods are powerful enough to investigate the finite-temperature properties of strongly correlated quantum many-body systems, even when the problematic effect of frustration is present.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Temperature-Based Deep Boltzmann Machines
    Passos, Leandro Aparecido, Jr.
    Papa, Joao Paulo
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 95 - 107
  • [22] An Efficient Learning Procedure for Deep Boltzmann Machines
    Salakhutdinov, Ruslan
    Hinton, Geoffrey
    NEURAL COMPUTATION, 2012, 24 (08) : 1967 - 2006
  • [23] REINFORCEMENT LEARNING USING QUANTUM BOLTZMANN MACHINES
    Crawford, Daniel
    Levit, Anna
    Ghadermarzy, Navid
    Oberoi, Jaspreet S.
    Ronaghe, Pooya
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (1-2) : 51 - 74
  • [24] Tomography and generative training with quantum Boltzmann machines
    Kieferova, Maria
    Wiebe, Nathan
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [25] Maximally efficient quantum thermal machines fueled by nonequilibrium steady states
    Santos, Tiago F. F.
    Tacchino, Francesco
    Gerace, Dario
    Campisi, Michele
    Santos, Marcelo F.
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [26] How to Pretrain Deep Boltzmann Machines in Two Stages
    Cho, Kyunghyun
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    ARTIFICIAL NEURAL NETWORKS, 2015, : 201 - 219
  • [27] Annealing and Replica-Symmetry in Deep Boltzmann Machines
    Alberici, Diego
    Barra, Adriano
    Contucci, Pierluigi
    Mingione, Emanuele
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 665 - 677
  • [28] Deep-FS: A feature selection algorithm for Deep Boltzmann Machines
    Taherkhani, Aboozar
    Cosma, Georgina
    McGinnity, T. M.
    NEUROCOMPUTING, 2018, 322 : 22 - 37
  • [29] Deep Boltzmann Machines: Rigorous Results at Arbitrary Depth
    Diego Alberici
    Pierluigi Contucci
    Emanuele Mingione
    Annales Henri Poincaré, 2021, 22 : 2619 - 2642
  • [30] Gender Aware Deep Boltzmann Machines for Phone Recognition
    Zoughi, Toktam
    Homayounpour, Mohammad Mehdi
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,