Maximally efficient quantum thermal machines fueled by nonequilibrium steady states

被引:6
|
作者
Santos, Tiago F. F. [1 ]
Tacchino, Francesco [2 ]
Gerace, Dario [3 ]
Campisi, Michele [4 ,5 ,6 ,7 ]
Santos, Marcelo F. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, CP68528, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] IBM Res Zurich, IBM Quantum, CH-8803 Ruschlikon, Switzerland
[3] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
[4] CNR, Ist Nanosci, NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy
[5] Scuola Normale Super Pisa, Piazza San Silvestro 12, I-56127 Pisa, Italy
[6] Univ Firenze, Dipartmento Fis & Astron, Via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[7] Ist Nazl Fis Nucl, Sez Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
关键词
HEAT ENGINE; FINITE-TIME; SPONTANEOUS EMISSION; OPEN SYSTEM; MODEL; WORK; THERMODYNAMICS; GENERATION;
D O I
10.1103/PhysRevA.103.062225
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The concept of thermal machines has evolved from the canonical steam engine to the recently proposed nanoscopic quantum systems as working fluids. The latter obey quantum open system dynamics and frequently operate in nonequilibrium conditions. However, the role of this dynamics in the overall performance of quantum heat engines remains an open problem. Here we analyze and optimize the efficiency and power output of two-stage quantum heat engines fueled by nonequilibrium steady states. In a charging first stage, the quantum working fluid consisting of a qutrit or two coupled qubits is connected to two reservoirs at different temperatures, which establish a heat current that stores ergotropy in the system; the second stage comprises a coherent driving force that extracts work from the machine in finite a amount of time; finally, the external drive is switched off and the machine enters a new cycle.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum response theory for nonequilibrium steady states
    Konopik, Michael
    Lutz, Eric
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [2] Quantum Macrostatistical Picture of Nonequilibrium Steady States
    Geoffrey Sewell
    Letters in Mathematical Physics, 2004, 68 : 53 - 65
  • [3] Quantum macrostatistical picture of nonequilibrium steady states
    Sewell, GL
    LETTERS IN MATHEMATICAL PHYSICS, 2004, 68 (01) : 53 - 65
  • [4] Quantum macrostatistical theory of nonequilibrium steady states
    Sewell, GL
    REVIEWS IN MATHEMATICAL PHYSICS, 2005, 17 (09) : 977 - 1020
  • [5] Thermodynamics of precision in quantum nonequilibrium steady states
    Guarnieri, Giacomo
    Landi, Gabriel T.
    Clark, Stephen R.
    Goold, John
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [6] Variational quantum algorithm for nonequilibrium steady states
    Yoshioka, Nobuyuki
    Nakagawa, Yuya O.
    Mitarai, Kosuke
    Fujii, Keisuke
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [7] Quantum thermal machines with single nonequilibrium environments
    Leggio, Bruno
    Bellomo, Bruno
    Antezza, Mauro
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [8] Nonequilibrium steady states in Langevin thermal systems
    Lee, Hyun Keun
    Lahiri, Sourabh
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [9] Quantum metrology with nonequilibrium steady states of quantum spin chains
    Marzolino, Ugo
    Prosen, Tomaz
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [10] Nonequilibrium steady states in the quantum XXZ spin chain
    Sabetta, Thiago
    Misguich, Gregoire
    PHYSICAL REVIEW B, 2013, 88 (24)