Purifying Deep Boltzmann Machines for Thermal Quantum States

被引:25
|
作者
Nomura, Yusuke [1 ]
Yoshioka, Nobuyuki [2 ,3 ]
Nori, Franco [3 ,4 ,5 ]
机构
[1] RIKEN, Ctr Emergent Matter Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[2] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[3] RIKEN, Cluster Pioneering Res CPR, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[4] RIKEN, Ctr Quantum Comp RQC, Wako, Saitama 3510198, Japan
[5] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构;
关键词
MONTE-CARLO; FRUSTRATION; SYSTEMS;
D O I
10.1103/PhysRevLett.127.060601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop two cutting-edge approaches to construct deep neural networks representing the purified finite-temperature states of quantum many-body systems. Both methods commonly aim to represent the Gibbs state by a highly expressive neural-network wave function, exemplifying the idea of purification. The first method is an entirely deterministic approach to generate deep Boltzmann machines representing the purified Gibbs state exactly. This strongly assures the remarkable flexibility of the ansatz which can fully exploit the quantum-to-classical mapping. The second method employs stochastic sampling to optimize the network parameters such that the imaginary time evolution is well approximated within the expressibility of neural networks. Numerical demonstrations for transverse-field Ising models and Heisenberg models show that our methods are powerful enough to investigate the finite-temperature properties of strongly correlated quantum many-body systems, even when the problematic effect of frustration is present.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Learnability scaling of quantum states: Restricted Boltzmann machines
    Sehayek, Dan
    Golubeva, Anna
    Albergo, Michael S.
    Kulchytskyy, Bohdan
    Torlai, Giacomo
    Melko, Roger G.
    PHYSICAL REVIEW B, 2019, 100 (19)
  • [2] Compression by and for Deep Boltzmann Machines
    Li, Qing
    Chen, Yang
    Kim, Yongjune
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (12) : 7498 - 7510
  • [3] Variational quantum Boltzmann machines
    Christa Zoufal
    Aurélien Lucchi
    Stefan Woerner
    Quantum Machine Intelligence, 2021, 3
  • [4] Variational quantum Boltzmann machines
    Zoufal, Christa
    Lucchi, Aurelien
    Woerner, Stefan
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [6] Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries
    Vieijra, Tom
    Casert, Corneel
    Nys, Jannes
    De Neve, Wesley
    Haegeman, Jutho
    Ryckebusch, Jan
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2020, 124 (09)
  • [7] How to Center Deep Boltzmann Machines
    Melchior, Jan
    Fischer, Asja
    Wiskott, Laurenz
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [8] Multimodal Learning with Deep Boltzmann Machines
    Srivastava, Nitish
    Salakhutdinov, Ruslan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 2949 - 2980
  • [9] How to center deep Boltzmann machines
    Melchior, Jan
    Fischer, Asja
    Wiskott, Laurenz
    Journal of Machine Learning Research, 2016, 17 : 1 - 61
  • [10] Multimodal learning with Deep Boltzmann Machines
    Srivastava, Nitish
    Salakhutdinov, Ruslan
    Journal of Machine Learning Research, 2014, 15 : 2949 - 2980