Hyperspectral unmixing algorithm via dependent component analysis

被引:0
|
作者
Nascimento, Jose M. P. [1 ,2 ]
Bioucas-Dias, Jose M. [3 ]
机构
[1] Inst Super Engn Lisboa, R Conselheiro Emidio Navarro 1,Edificio DEETC, P-1959007 Lisbon, Portugal
[2] Inst Telecommun, P-1959007 Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Telecommun, Inst Super Tecn, Lisbon, Portugal
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
引用
收藏
页码:4033 / +
页数:2
相关论文
共 50 条
  • [41] Hyperspectral unmixing via deep matrix factorization
    Tong, Lei
    Yu, Jing
    Xiao, Chuangbai
    Qian, Bin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (06)
  • [42] UNSUPERVISED HYPERSPECTRAL UNMIXING VIA KERNELIZED CORRELATIONS
    Shahid, Kazi Tanzeem
    Schizas, Ioannis D.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6388 - 6391
  • [43] HYPERSPECTRAL IMAGE UNMIXING VIA QUADRATIC PROGRAMMING
    Yang, Zhuocheng
    Farison, James B.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1285 - 1288
  • [44] Hyperspectral Shadow Removal via Nonlinear Unmixing
    Zhao, Min
    Chen, Jie
    Rahardja, Susanto
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 881 - 885
  • [45] Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
    Zhong, Yanfei
    Wang, Xinyu
    Zhao, Lin
    Feng, Ruyi
    Zhang, Liangpei
    Xu, Yanyan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 119 : 49 - 63
  • [46] Sensitivity of Spectral Unmixing Analysis to a Spectrally Dependent Gain Error in Hyperspectral Data
    Soffer, R. J.
    Neville, R. A.
    Staenz, K.
    White, H. P.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1130 - 1133
  • [47] Parallel Implementation of the Multiple Endmember Spectral Mixture Analysis Algorithm for Hyperspectral Unmixing
    Bernabe, Sergio
    Igual, Francisco D.
    Botella, Guillermo
    Prieto-Matias, Manuel
    Plaza, Antonio
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING V, 2015, 9646
  • [48] A Fast Sparse NMF Optimization Algorithm for Hyperspectral Unmixing
    Qu, Kewen
    Li, Zhenqing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1885 - 1902
  • [49] KERNEL BASED SPARSE NMF ALGORITHM FOR HYPERSPECTRAL UNMIXING
    Wang, Wenhong
    Qian, Yuntao
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6970 - 6973
  • [50] AN NCM-BASED BAYESIAN ALGORITHM FOR HYPERSPECTRAL UNMIXING
    Eches, Olivier
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 9 - 12