Hyperspectral unmixing algorithm via dependent component analysis

被引:0
|
作者
Nascimento, Jose M. P. [1 ,2 ]
Bioucas-Dias, Jose M. [3 ]
机构
[1] Inst Super Engn Lisboa, R Conselheiro Emidio Navarro 1,Edificio DEETC, P-1959007 Lisbon, Portugal
[2] Inst Telecommun, P-1959007 Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Telecommun, Inst Super Tecn, Lisbon, Portugal
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
引用
收藏
页码:4033 / +
页数:2
相关论文
共 50 条
  • [31] Error analysis in hyperspectral unmixing
    Gillis, D
    Bowles, J
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 42 - 52
  • [32] Minimum Volume Simplex Analysis: A Fast Algorithm for Linear Hyperspectral Unmixing
    Li, Jun
    Agathos, Alexander
    Zaharie, Daniela
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Li, Xia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (09): : 5067 - 5082
  • [33] HYPERSPECTRAL UNMIXING USING AN ACTIVE SET ALGORITHM
    Heylen, Rob
    Scheunders, Paul
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 694 - 697
  • [34] Unsupervised Hyperspectral Unmixing via Nonlinear Autoencoders
    Shahid, Kazi Tanzeem
    Schizas, Ioannis D.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] A two-step iterative algorithm for sparse hyperspectral unmixing via total variation
    Wang, Jin-Ju
    Huang, Ting-Zhu
    Huang, Jie
    Deng, Liang-Jian
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
  • [36] Hyperspectral Unmixing via Semantic Spectral Representations
    Itoh, Yuki
    Feng, Siwei
    Duarte, Marco F.
    Parente, Mario
    2014 IEEE 57TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2014, : 149 - 152
  • [37] Hyperspectral subpixel unmixing via an integrative framework
    Li, Chunzhi
    Chen, Xiaohua
    Zhang, Yuan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (22) : 8775 - 8804
  • [38] MULTIMODAL HYPERSPECTRAL UNMIXING VIA ATTENTION NETWORKS
    Han, Zhu
    Hong, Danfeng
    Gao, Lianru
    Yao, Jing
    Zhang, Bing
    Chanussot, Jocelyn
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1784 - 1787
  • [39] Soil Biochar Quantification via Hyperspectral Unmixing
    Tong, Lei
    Zhou, Jun
    Xu, Chengyuan
    Qian, Yuntao
    Gao, Yongsheng
    2013 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES & APPLICATIONS (DICTA), 2013, : 412 - 419
  • [40] Hyperspectral Unmixing via Latent Multiheterogeneous Subspace
    Li, Chunzhi
    Gu, Yonggen
    Chen, Xiaohua
    Zhang, Yuan
    Ruan, Lijian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 563 - 577