Normal and Anomalous Diffusion in Soft Lorentz Gases

被引:15
|
作者
Klages, Rainer [1 ,2 ,3 ]
Gallegos, Sol Selene Gil [1 ]
Solanpaa, Janne [4 ]
Sarvilahti, Mika [4 ]
Rasanen, Esa [4 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[3] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[4] Tampere Univ, Computat Phys Lab, POB 692, FI-33014 Tampere, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
DETERMINISTIC DIFFUSION; ELECTRONS; MAGNETOTRANSPORT; HONEYCOMB; DYNAMICS; ISLANDS; SYSTEMS; TERMS; CHAOS;
D O I
10.1103/PhysRevLett.122.064102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by electronic transport in graphenelike structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional periodic Lorentz gas are replaced by soft repulsive scatterers. A thorough computational analysis yields both normal and anomalous (super)diffusion with an extreme sensitivity on model parameters. This is due to an intricate interplay between trapped and ballistic periodic orbits, whose existence is characterized by tonguelike structures in parameter space. These results hold even for small softness, showing that diffusion in the paradigmatic hard Lorentz gas is not robust for realistic potentials, where we find an entirely different type of diffusion.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level
    Hapca, Simona
    Crawford, John W.
    Young, Iain M.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2009, 6 (30) : 111 - 122
  • [32] Coexistence of anomalous and normal diffusion in integrable Mott insulators
    Steinigeweg, R.
    Herbrych, J.
    Prelovsek, P.
    Mierzejewski, M.
    PHYSICAL REVIEW B, 2012, 85 (21):
  • [33] The Hamiltonian mean field model: anomalous or normal diffusion?
    Antoniazzi, Andrea
    Fanelli, Ducclo
    Ruffo, Stefano
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 122 - +
  • [34] Relation between anomalous and normal diffusion in systems with memory
    Morgado, R
    Oliveira, FA
    Batrouni, GG
    Hansen, A
    PHYSICAL REVIEW LETTERS, 2002, 89 (10)
  • [35] Occurrence of normal and anomalous diffusion in polygonal billiard channels
    Sanders, DP
    Larralde, H
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [36] Explanation of the zero normal gradient of the inert gases by diffusion
    Zimmermann, G.
    ZEITSCHRIFT FUR PHYSIK, 1934, 91 (11-12): : 767 - 774
  • [37] Signatures of normal and anomalous diffusion in nanotube systems by NMR
    Dvoyashkin, M.
    Wang, A.
    Katihar, A.
    Zang, J.
    Yucelen, G. I.
    Nair, S.
    Sholl, D. S.
    Bowers, C. R.
    Vasenkov, S.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 : 119 - 122
  • [38] Normal and anomalous diffusion of gravel tracer particles in rivers
    Ganti, Vamsi
    Meerschaert, Mark M.
    Foufoula-Georgiou, Efi
    Viparelli, Enrica
    Parker, Gary
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2010, 115
  • [39] Comment on "Diffusion on a solid surface: Anomalous is normal" - Reply
    Sancho, JM
    Lacasta, AM
    Lindenberg, K
    Sokolov, IM
    Romero, AH
    PHYSICAL REVIEW LETTERS, 2005, 94 (18)
  • [40] ANISOTROPIC NONLOCAL DIFFUSION OPERATORS FOR NORMAL AND ANOMALOUS DYNAMICS
    Deng, Weihua
    Wang, Xudong
    Zhang, Pingwen
    MULTISCALE MODELING & SIMULATION, 2020, 18 (01): : 415 - 443