Occurrence of normal and anomalous diffusion in polygonal billiard channels

被引:38
|
作者
Sanders, DP
Larralde, H
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca, Morelos, Mexico
[2] Univ Warwick, Inst Math, Warwick CV4 7AL, Coventry, England
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.026205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e., when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t ln t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e., power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Spectral properties and anomalous transport in a polygonal billiard
    Artuso, R
    Guarneri, I
    Rebuzzini, L
    CHAOS, 2000, 10 (01) : 189 - 194
  • [2] Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels
    Li, BW
    Wang, J
    Wang, L
    Zhang, G
    CHAOS, 2005, 15 (01)
  • [3] POWER SPECTRA FOR ANOMALOUS DIFFUSION IN THE EXTENDED SINAI BILLIARD
    ZACHERL, A
    GEISEL, T
    NIERWETBERG, J
    RADONS, G
    PHYSICS LETTERS A, 1986, 114 (06) : 317 - 321
  • [4] Anomalous diffusion and dynamical localization in polygonal billiards
    Prosen, T
    Znidaric, M
    PHYSICAL REVIEW LETTERS, 2001, 87 (11) : art. no. - 114101
  • [5] Anomalous diffusion and dynamical localization in polygonal billiards
    Prosen, T.
    Žnidarič, M.
    2001, American Institute of Physics Inc. (87)
  • [6] Diffractive geodesics of a polygonal billiard
    Hillairet, L
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 : 71 - 86
  • [8] On polygonal dual billiard in the hyperbolic plane
    Dogru, F
    Tabachnikov, S
    REGULAR & CHAOTIC DYNAMICS, 2003, 8 (01): : 67 - 81
  • [9] NORMAL AND ANOMALOUS DIFFUSION OF GRAINS
    Trigger, S. A.
    Van Heijst, G. J. F.
    Kroesen, G. M. W.
    Schram, P. P. J. M.
    Stoffels, E.
    Stoffels, W. W.
    UKRAINIAN JOURNAL OF PHYSICS, 2005, 50 (02): : 196 - 199
  • [10] Mixing normal and anomalous diffusion
    Geyer, Tihamer
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (11):