Hierarchical Unified Spectral-Spatial Aggregated Transformer for Hyperspectral Image Classification

被引:2
|
作者
Zhou, Weilian [1 ]
Kamata, Sei-Ichiro [1 ]
Luo, Zhengbo [1 ]
Chen, Xiaoyue [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Kitakyushu, Japan
关键词
D O I
10.1109/ICPR56361.2022.9956396
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision Transformer (ViT) has recently been introduced into the computer vision (CV) field with its self-attention mechanism and gotten remarkable performance. However, simply applying ViT for hyperspectral image (HSI) classification is not applicable due to 1) ViT is a spatial-only self-attention model, but rich spectral information exists in HSI; 2) ViT needs sufficient training samples, but HSI suffers from limited samples; 3) ViT does not well learn local features; 4) multi-scale features for ViT are not considered. Furthermore, the methods which combine convolutional neural network (CNN) and ViT generally suffer from a large computational burden. Hence, this paper tends to design a suitable pure ViT based model for HSI classification as the following points: 1) spectral-only vision transformer with all tokens' aggregation; 2) spatial-only local-global transformer; 3) cross-scale local-global feature fusion, and 4) a cooperative loss function to unify the spectral and spatial features. As a result, the proposed idea achieves competitive classification performance on three public datasets than other state-of-the-art methods.
引用
收藏
页码:3041 / 3047
页数:7
相关论文
共 50 条
  • [31] S2Former: Parallel Spectral-Spatial Transformer for Hyperspectral Image Classification
    Yuan, Dong
    Yu, Dabing
    Qian, Yixi
    Xu, Yongbing
    Liu, Yan
    [J]. ELECTRONICS, 2023, 12 (18)
  • [32] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTI-LEVEL SPECTRAL-SPATIAL TRANSFORMER NETWORK
    Yang, Hao
    Yu, Haoyang
    Hong, Danfeng
    Xu, Zhen
    Wang, Yulei
    Song, Meiping
    [J]. 2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [33] Spectral-Spatial Attention Networks for Hyperspectral Image Classification
    Mei, Xiaoguang
    Pan, Erting
    Ma, Yong
    Dai, Xiaobing
    Huang, Jun
    Fan, Fan
    Du, Qinglei
    Zheng, Hong
    Ma, Jiayi
    [J]. REMOTE SENSING, 2019, 11 (08)
  • [34] SPECTRAL-SPATIAL ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5126 - 5129
  • [35] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [36] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [37] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [38] A Complementary Spectral-Spatial Method for Hyperspectral Image Classification
    Shi, Lulu
    Li, Chunchao
    Li, Teng
    Peng, Yuanxi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Sparse Representations for the Spectral-Spatial Classification of Hyperspectral Image
    Hamdi, Mohamed Ali
    Ben Salem, Rafika
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 923 - 929
  • [40] Spectral-Spatial Rotation Forest for Hyperspectral Image Classification
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4605 - 4613