Obstructions to deforming curves on a 3-fold, III: Deformations of curves lying on a K3 surface

被引:4
|
作者
Nasu, Hirokazu [1 ]
机构
[1] Tokai Univ, Dept Math Sci, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 2591292, Japan
关键词
Hilbert scheme; infinitesimal deformation; obstruction; K3; surface; Fano threefold; NON-REDUCED COMPONENTS; ALGEBRAIC-GEOMETRY; HILBERT SCHEME; SPACE-CURVES; CONE;
D O I
10.1142/S0129167X17500999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the deformations of a smooth curve C on a smooth projective 3-fold V, assuming the presence of a smooth surface S satisfying C subset of S subset of V. Generalizing a result of Mukai and Nasu, we give a new sufficient condition for a first order infinitesimal deformation of C in V to be primarily obstructed. In particular, when V is Fano and S is K3, we give a sufficient condition for C to be (un) obstructed in V, in terms of (-2)-curves and elliptic curves on S. Applying this result, we prove that the Hilbert scheme Hilb(sc) V-4 of smooth connected curves on a smooth quartic 3-fold V-4 subset of P-4 contains infinitely many generically non-reduced irreducible components, which are variations of Mumford's example for Hilb(sc) P-3.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Nodal elliptic curves on K3 surfaces
    Chen, Nathan
    Greer, Francois
    Yang, Ruijie
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 2349 - 2370
  • [42] Orbits of curves on certain K3 surfaces
    Baragar, A
    COMPOSITIO MATHEMATICA, 2003, 137 (02) : 115 - 134
  • [43] 24 rational curves on K3 surfaces
    Rams, Slawomir
    Schuett, Matthias
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (06)
  • [44] The moduli of singular curves on K3 surfaces
    Kemeny, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (05): : 882 - 920
  • [45] Nodal elliptic curves on K3 surfaces
    Nathan Chen
    François Greer
    Ruijie Yang
    Mathematische Annalen, 2023, 386 : 2349 - 2370
  • [46] Rational Curves on Mg and K3 Surfaces
    Benzo, Luca
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (15) : 4179 - 4214
  • [47] Maximal variation of curves on K3 surfaces
    Dutta, Yajnaseni
    Huybrechts, Daniel
    TUNISIAN JOURNAL OF MATHEMATICS, 2022, 4 (03) : 443 - 464
  • [48] Moduli of nodal curves on K3 surfaces
    Ciliberto, Ciro
    Flamini, Flaminio
    Galati, Concettina
    Knutsen, Andreas Leopold
    ADVANCES IN MATHEMATICS, 2017, 309 : 624 - 654
  • [49] CURVES OF GENUS 10 ON K3 SURFACES
    CUKIERMAN, F
    ULMER, D
    COMPOSITIO MATHEMATICA, 1993, 89 (01) : 81 - 90
  • [50] Density of rational curves on K3 surfaces
    Chen, Xi
    Lewis, James D.
    MATHEMATISCHE ANNALEN, 2013, 356 (01) : 331 - 354