We study the deformations of a smooth curve C on a smooth projective 3-fold V, assuming the presence of a smooth surface S satisfying C subset of S subset of V. Generalizing a result of Mukai and Nasu, we give a new sufficient condition for a first order infinitesimal deformation of C in V to be primarily obstructed. In particular, when V is Fano and S is K3, we give a sufficient condition for C to be (un) obstructed in V, in terms of (-2)-curves and elliptic curves on S. Applying this result, we prove that the Hilbert scheme Hilb(sc) V-4 of smooth connected curves on a smooth quartic 3-fold V-4 subset of P-4 contains infinitely many generically non-reduced irreducible components, which are variations of Mumford's example for Hilb(sc) P-3.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Ciliberto, Ciro
Flamini, Flaminio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Flamini, Flaminio
论文数: 引用数:
h-index:
机构:
Galati, Concettina
Knutsen, Andreas Leopold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, NorwayUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy