A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams

被引:10
|
作者
Sibolla, Bolelang H. [1 ,2 ]
Coetzee, Serena [1 ]
Van Zyl, Terence L. [3 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Ctr Geoinformat Sci, ZA-0028 Pretoria, South Africa
[2] CSIR, Meraka Inst, Earth Observat Sci & Informat Technol, ZA-0001 Pretoria, South Africa
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2000 Johannesburg, South Africa
关键词
Sensor observation; data streaming; spatio-temporal data; geovisual analyitcs; VISUALIZATION; PATTERNS; DISCOVERY; DENSITY; DESIGN; MODEL;
D O I
10.3390/ijgi7120475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from the underlying observations. This paper presents (1) a state of the art review into visual analytics of geospatial, spatio-temporal streaming data, and (2) proposes a framework based on the identified gaps from the review. The framework consists of (1) the data model that characterizes the sensor observation data, (2) the user model, which addresses the user queries and manages domain knowledge, (3) the design model, which handles the patterns that can be uncovered from the data and corresponding visualizations, and (4) the visualization model, which handles the rendering of the data. The conclusion from the visualization model is that streaming sensor observations require tools that can handle multivariate, multiscale, and time series displays. The design model reveals that the most useful patterns are those that show relationships, anomalies, and aggregations of the data. The user model highlights the need for handling missing data, dealing with high frequency changes, as well as the ability to review retrospective changes.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A Visual Analytics GUI for Multigranular Spatio-Temporal Exploration and Comparison of Open Mobility Data
    Robino, Camilla
    Di Rocco, Laura
    Guerrini, Giovanna
    Di Martino, Sergio
    Bertolotto, Michela
    2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, : 309 - 314
  • [22] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [23] Spatio-temporal visual analytics: a vision for 2020s
    Andrienko, Natalia
    Andrienko, Gennady
    JOURNAL OF SPATIAL INFORMATION SCIENCE, 2020, (20): : 87 - 95
  • [24] A Survey on Visual Analytics for the Spatio-Temporal Exploration of Microblogging Content
    Bertone A.
    Burghardt D.
    Journal of Geovisualization and Spatial Analysis, 2017, 1 (1-2)
  • [25] Density estimation over spatio-temporal data streams
    Amiri, Aboubacar
    Dabo-Niang, Sophie
    ECONOMETRICS AND STATISTICS, 2018, 5 (01) : 148 - 170
  • [26] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [27] Spatio-Temporal Data Augmentation for Visual Surveillance
    Kim, Jae-Yeul
    Ha, Jong-Eun
    IEEE ACCESS, 2021, 9 : 165014 - 165033
  • [28] A visual approach for spatio-temporal data mining
    Kechadi, M-Tahar
    Bertolotto, Michela
    IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 504 - +
  • [29] Spatio-temporal sensor data processing techniques
    Kim J.-J.
    Kim, Jeong-Joon (jjkim@kpu.ac.kr), 1600, Korea Information Processing Society (13): : 1259 - 1276
  • [30] STIFF: A forecasting framework for spatio-temporal data
    Li, ZG
    Dunham, MH
    Xia, YQ
    MINING MULTIMEDIA AND COMPLEX DATA, 2003, 2797 : 183 - 198