Spatio-Temporal Data Augmentation for Visual Surveillance

被引:1
|
作者
Kim, Jae-Yeul [1 ]
Ha, Jong-Eun [2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Grad Sch Informat & Commun Engn, Daegu 42988, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Mech & Automot Engn, Seoul 01811, South Korea
来源
IEEE ACCESS | 2021年 / 9卷
基金
新加坡国家研究基金会;
关键词
Visualization; Surveillance; Data models; Training; Brightness; Image sequences; Heuristic algorithms; Visual surveillance; data augmentation; generalization power; deep learning; convolutional neural networks; BACKGROUND SUBTRACTION; NETWORK;
D O I
10.1109/ACCESS.2021.3135505
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual surveillance aims to detect a foreground object using a continuous image acquired from a fixed camera. Recent deep learning methods based on supervised learning show superior performance compared to classical background subtraction algorithms. However, there is still room for improvement in the static foreground, dynamic background, hard shadow, illumination changes, camouflage, etc. In addition, most of the deep learning-based methods operate well in environments similar to training. If the testing environments are different from training ones, their performance degrades. As a result, additional training in those operating environments is required to ensure good performance. Our previous work, which uses spatio-temporal input data consisting of several past images, background images, and the current image, showed promising results in different environments from training. However, it uses a simple U-NET structure. This paper proposes a data augmentation technique suitable for visual surveillance for additional performance improvement using the same network used in our previous work. In deep learning, most data augmentation techniques deal with spatial-level data augmentation techniques used in image classification and object detection. We propose two data augmentation methods of adjusting background model images and past images. The proposed algorithm improves performance in complex areas such as static foreground and ghost objects compared to previous studies. Through quantitative and qualitative evaluation using SBI, LASIESTA, and our dataset, we show superior performance compared to deep learning-based algorithms and background subtraction algorithms. In addition, it has a 30.2% and 27.9% reduction of false detection rate in the LASIESTA and SBI dataset, respectively, compared to our previous study.
引用
收藏
页码:165014 / 165033
页数:20
相关论文
共 50 条
  • [1] A visual approach for spatio-temporal data mining
    Kechadi, M-Tahar
    Bertolotto, Michela
    [J]. IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 504 - +
  • [2] Spatio-temporal analysis of Salmonella surveillance data in Thailand
    Domingues, A. R.
    Vieira, A. R.
    Hendriksen, R. S.
    Pulsrikarn, C.
    Aarestrup, F. M.
    [J]. EPIDEMIOLOGY AND INFECTION, 2014, 142 (08): : 1614 - 1624
  • [3] Visual interactive clustering and querying of spatio-temporal data
    Sourina, O
    Liu, DQ
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 968 - 977
  • [4] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    [J]. PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [5] Visual exploration of spatio-temporal relationships for scientific data
    Mehta, Sameep
    Parthasarathy, Srinivasan
    Machiraju, Raghu
    [J]. VAST 2006: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY, PROCEEDINGS, 2006, : 11 - +
  • [6] Spatio-Temporal Visual Analysis for Urban Traffic Characters Based on Video Surveillance Camera Data
    Zou, Haochen
    Cao, Keyan
    Jiang, Chong
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (03)
  • [7] Visual exploration of spatio-temporal patterns in epidemiological data
    Mayala, B. K.
    [J]. TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2007, 12 : 195 - 196
  • [8] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    [J]. 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [9] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    [J]. 2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [10] PREDICTION AND IMPUTATION OF SPATIO-TEMPORAL DATA: DENGUE SURVEILLANCE IN THAILAND
    Lessler, J.
    Reich, N. G.
    Iamsirithaworn, S.
    Cummings, D. A. T.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S183 - S183