Effects of the heterogeneity in the electron beam welded joint on fatigue crack growth in Ti-6Al-4V alloy

被引:39
|
作者
Li, Xingzhi [1 ]
Hu, Shubing [1 ]
Xiao, Jianzhong [1 ]
Ji, Longbo [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die Mould Technol, Wuhan 430074, Peoples R China
关键词
Titanium alloys; Fatigue; Heterogeneity; Electron beam welding; TITANIUM-ALLOY; RESIDUAL-STRESS; MICROSTRUCTURE; BEHAVIOR; PROPAGATION; FRACTURE; PLATE;
D O I
10.1016/j.msea.2011.09.014
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The heterogeneity of electron beam (EB)-welded joints in thick Ti-6Al-4V alloy plates is defined and described. The microstructure, hardness, and fatigue crack growth rate (FCGR) in the fuse zone (FZ) and the heat-affected zone (HAZ) of thick Ti-6Al-4V alloy EB-welded joint are studied using a new testing and interception method. The fatigue fractographs, crack growth paths and the microscopic deformation are observed through scanning and transmission electron microscopy. The effect mechanism of heterogeneity in the electron beam weld joint to FCGRs is discussed. The results reveal that FCGR is higher in the HAZ than in the FZ, mainly because of the effect of heterogeneity! of the welded joint. Heterogeneity II increases from the top to the root of the welding seam while the size of the alpha' phase decreases. Consequently, FCGR is higher at the root of the welding seam. Heterogeneity in the joint is found to greatly influence the FCGR. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 176
页数:7
相关论文
共 50 条
  • [21] Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen
    Neikter, M.
    Colliander, M.
    Schwerz, C. de Andrade
    Hansson, T.
    Akerfeldt, P.
    Pederson, R.
    Antti, M. -L.
    MATERIALS, 2020, 13 (06)
  • [22] RADIATION EFFECTS IN ELECTRON-BEAM WELDED TITANIUM AND TI-6AL-4V
    KOHYAMA, A
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1986, 72 (05): : S744 - S744
  • [23] Probabilistic modeling of fatigue crack growth in Ti-6Al-4V
    Soboyejo, W.O.
    Shen, W.
    Soboyejo, A.B.O.
    Key Engineering Materials, 2001, 200 : 81 - 98
  • [24] Probabilistic modeling of fatigue crack growth in Ti-6Al-4V
    Shen, W
    Soboyejo, ABO
    Soboyejo, WO
    INTERNATIONAL JOURNAL OF FATIGUE, 2001, 23 (10) : 917 - 925
  • [25] An investigation of the effects of colony microstructure on fatigue crack growth in Ti-6Al-4V
    Sinha, V
    Soboyejo, WO
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 : 607 - 612
  • [26] Probabilistic modeling of fatigue crack growth in Ti-6Al-4V
    Soboyejo, WO
    Shen, W
    Soboyejo, AO
    PROBABILISTIC METHODS IN FATIGUE AND FRACTURE, 2001, 200 : 81 - 97
  • [27] Prediction of short fatigue crack growth of Ti-6Al-4V
    Wang, K.
    Wang, F.
    Cui, W.
    Hayat, T.
    Ahmad, B.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2014, 37 (10) : 1075 - 1086
  • [28] Mechanisms of fatigue crack growth in Ti-6Al-4V alloy subjected to single overloads
    Neto, D. M.
    Borges, M. F.
    Antunes, F., V
    Jesus, J.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 114
  • [29] Microstructure effects on fatigue crack growth in additively manufactured Ti-6Al-4V
    VanSickle, Raeann
    Foehring, David
    Chew, Huck Beng
    Lambros, John
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [30] Stress ratio effects on small fatigue crack growth in Ti-6Al-4V
    Caton, M. J.
    John, R.
    Porter, W. J.
    Burba, M. E.
    INTERNATIONAL JOURNAL OF FATIGUE, 2012, 38 : 36 - 45