Goodness-of-fit tests for semiparametric biased sampling models

被引:8
|
作者
Gilbert, PB
机构
[1] Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98109 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98105 USA
基金
美国国家卫生研究院;
关键词
Anderson-Darling; empirical distributions; Kolmogorov-Smirnov; profile partial likelihood; selection bias; weighted distributions;
D O I
10.1016/S0378-3758(02)00405-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider an s-sample biased sampling model in which the distribution function for each of the first s-1 samples is related to the unknown distribution function G of the sth sample by a known parametric selection bias weight function. Gilbert et al. (Biometrika 86 (1999) 27) gave a procedure for semiparametric maximum likelihood estimation of the parameters in this model. In many applications, information are scarce for basing the choice of the parametric weight function(s), motivating the need for goodness-of-fit tests of the hypothesis that the weight functions are correctly specified. Cramer-von Mises-type, Anderson-Darling-type, and Kolmogorov-Smirnov-type test statistics are studied which compare discrepancies between the empirical distribution of G and the semiparametric maximum likelihood estimator of G. Finite-sample properties of the tests are evaluated with simulations and with a real example of HIV genetic sequence data. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 81
页数:31
相关论文
共 50 条
  • [41] Martingale transforms goodness-of-fit tests in regression models
    Khmaladze, EV
    Koul, HL
    [J]. ANNALS OF STATISTICS, 2004, 32 (03): : 995 - 1034
  • [42] Goodness-of-fit tests in semi-linear models
    Simos G. Meintanis
    Jochen Einbeck
    [J]. Statistics and Computing, 2012, 22 : 967 - 979
  • [43] Goodness-of-fit Tests for Modified Multinomial Logit Models
    Cirillol, Marcelo Angelo
    Ramose, Patricia de Siqueira
    [J]. CHILEAN JOURNAL OF STATISTICS, 2014, 5 (01): : 73 - 85
  • [44] Goodness-of-fit tests for ordinal response regression models
    Lipsitz, SR
    Fitzmaurice, GM
    Molenberghs, G
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1996, 45 (02) : 175 - 190
  • [45] On the goodness-of-fit tests for gamma generalized linear models
    Jo, Seongil
    Lee, Myeongjee
    Lee, Woojoo
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (01) : 315 - 332
  • [46] On the goodness-of-fit tests for gamma generalized linear models
    Seongil Jo
    Myeongjee Lee
    Woojoo Lee
    [J]. Journal of the Korean Statistical Society, 2021, 50 : 315 - 332
  • [47] Tuning goodness-of-fit tests
    Arrasmith, A.
    Follin, B.
    Anderes, E.
    Knox, L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) : 1889 - 1898
  • [48] Goodness-of-Fit Tests on Manifolds
    Shapiro, Alexander
    Xie, Yao
    Zhang, Rui
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (04) : 2539 - 2553
  • [49] MULTINOMIAL GOODNESS-OF-FIT TESTS
    CRESSIE, N
    READ, TRC
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1984, 46 (03): : 440 - 464
  • [50] MULTIVARIATE GOODNESS-OF-FIT TESTS
    ROSENBLATT, J
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02): : 807 - &