INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC OPERATORS IN TRANSVERSALLY ANISOTROPIC GEOMETRIES

被引:8
|
作者
Yan, Lili [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
inverse problems; biharmonic operators; conformally transversally geometries; CALDERON PROBLEM; 1ST-ORDER PERTURBATION; SCHRODINGER-OPERATORS; MANIFOLDS;
D O I
10.1137/21M1391419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study inverse boundary problems for first order perturbations of the biharmonic operator on a conformally transversally anisotropic Riemannian manifold of dimension n \geq 3. We show that a continuous first order perturbation can be determined uniquely from the knowledge of the set of the Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the transversal manifold is injective.
引用
收藏
页码:6617 / 6653
页数:37
相关论文
共 50 条