Inverse problems for partition functions

被引:2
|
作者
Yang, YF [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.4153/CJM-2001-035-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(w)(n) be the weighted partition function defined by the generating function Sigma (infinity)(n=0) p(w)(n)x(n) = Pi (infinity)(m=1) (1 - x(m))(-w(m)), where w(m) is a non-negative arithmetic function. Let P-w(u) = Sigma (n less than or equal tou) p(w)(n) and N-w(u) = Sigma (n less than or equal tou) w(n) be the summatory functions for p(w)(n) and w(n), respectively. Generalizing results of G. A. Freiman and E. E. Kohlbecker, we show that, for a large class of functions Phi (u) and lambda (u), an estimate for P-w(u) of the form log P-w(u) = Phi (u){1 + Ou(1/lambda (u)) } (u --> infinity) implies an estimate for N-w(u) of the form N-w(u) = Phi* (u){1 + O (1/log lambda (u)) } (u --> infinity) with a suitable function Phi* (u) defined in terms of Phi (u). We apply this result and related results to obtain characterizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms of the asymptotic behavior of certain weighted partition functions.
引用
收藏
页码:866 / 896
页数:31
相关论文
共 50 条
  • [31] PROBLEMS OF PARTITION-FUNCTIONS CALCULATIONS OF MONOATOMIC AND DIATOMIC-MOLECULES IN PLASMA
    FAUCHAIS, P
    BARONNET, JM
    BAYARD, S
    REVUE INTERNATIONALE DES HAUTES TEMPERATURES ET DES REFRACTAIRES, 1975, 12 (03): : 221 - 235
  • [32] On some partition functions
    Haberzetle, M
    AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 : 589 - 599
  • [33] CALCULATION OF PARTITION FUNCTIONS
    HUBBARD, J
    PHYSICAL REVIEW LETTERS, 1959, 3 (02) : 77 - 78
  • [34] ON A CALCULUS OF PARTITION FUNCTIONS
    ANDREWS, GE
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (03) : 555 - &
  • [35] On the parity of partition functions
    Nicolas, JL
    Sarkozy, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1995, 39 (04) : 586 - 597
  • [36] The complexity of partition functions
    Bulatov, A
    Grohe, M
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 294 - 306
  • [37] On the parity of partition functions
    Berndt, BC
    Yee, AJ
    Zaharescu, A
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (04) : 437 - 459
  • [38] Lacunary partition functions
    Lovejoy, J
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (2-3) : 191 - 198
  • [39] Submodular partition functions
    Amini, Omid
    Mazoit, Frederic
    Nisse, Nicolas
    Thomasse, Stephan
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6000 - 6008
  • [40] Congruences for partition functions
    Eichhorn, D
    Ono, K
    ANALYTIC NUMBER THEORY, VOL 1: PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 138 : 309 - 321