Inverse problems for partition functions

被引:2
|
作者
Yang, YF [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.4153/CJM-2001-035-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(w)(n) be the weighted partition function defined by the generating function Sigma (infinity)(n=0) p(w)(n)x(n) = Pi (infinity)(m=1) (1 - x(m))(-w(m)), where w(m) is a non-negative arithmetic function. Let P-w(u) = Sigma (n less than or equal tou) p(w)(n) and N-w(u) = Sigma (n less than or equal tou) w(n) be the summatory functions for p(w)(n) and w(n), respectively. Generalizing results of G. A. Freiman and E. E. Kohlbecker, we show that, for a large class of functions Phi (u) and lambda (u), an estimate for P-w(u) of the form log P-w(u) = Phi (u){1 + Ou(1/lambda (u)) } (u --> infinity) implies an estimate for N-w(u) of the form N-w(u) = Phi* (u){1 + O (1/log lambda (u)) } (u --> infinity) with a suitable function Phi* (u) defined in terms of Phi (u). We apply this result and related results to obtain characterizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms of the asymptotic behavior of certain weighted partition functions.
引用
收藏
页码:866 / 896
页数:31
相关论文
共 50 条
  • [21] Bayesian inverse problems for functions and applications to fluid mechanics
    Cotter, S. L.
    Dashti, M.
    Robinson, J. C.
    Stuart, A. M.
    INVERSE PROBLEMS, 2009, 25 (11)
  • [22] ON SOME PROBLEMS IN QUANTUM PHARMACOLOGY .1. THE PARTITION-FUNCTIONS
    GOMEZJERIA, JS
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1983, 23 (06) : 1969 - 1972
  • [23] Trefftz numerical functions for solving inverse heat conduction problems
    Frackowiak, Andrzej
    Wroblewska, Agnieszka
    Cialkowski, Michal
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 177
  • [24] GENERATING-FUNCTIONS, EVOLUTION-EQUATIONS AND INVERSE PROBLEMS
    ANIKONOV, YY
    DOKLADY AKADEMII NAUK, 1992, 323 (05) : 871 - 875
  • [25] An improved PSO method with application to multimodal functions of inverse problems
    Ho, S. L.
    Yang, S. Y.
    Ni, G. Z.
    Wong, K. F.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1597 - 1600
  • [26] VARIATIONAL BAYES' METHOD FOR FUNCTIONS WITH APPLICATIONS TO SOME INVERSE PROBLEMS
    Jia, Junxiong
    Zhao, Qian
    Xu, Zongben
    Meng, Deyu
    Leung, Yee
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01): : A355 - A383
  • [27] STIELTJES LIKE FUNCTIONS AND INVERSE PROBLEMS FOR SYSTEMS WITH SCHRODINGER OPERATOR
    Belyi, Sergey
    Tsekanovskii, Eduard
    OPERATORS AND MATRICES, 2008, 2 (02): : 265 - 296
  • [28] Solving the inverse heat conduction problems with the use of heat functions
    Cialkowski, MJ
    Futakiewicz, S
    Hozejowski, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S673 - S674
  • [29] The problems with partition
    McGarry, J
    Moore, M
    POLITICS AND THE LIFE SCIENCES, 1997, 16 (02) : 266 - 267
  • [30] Novel basis functions for the partition of unity boundary element method for Helmholtz problems
    Peake, M. J.
    Trevelyan, J.
    Coates, G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (09) : 905 - 918