Inverse problems for partition functions

被引:2
|
作者
Yang, YF [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.4153/CJM-2001-035-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(w)(n) be the weighted partition function defined by the generating function Sigma (infinity)(n=0) p(w)(n)x(n) = Pi (infinity)(m=1) (1 - x(m))(-w(m)), where w(m) is a non-negative arithmetic function. Let P-w(u) = Sigma (n less than or equal tou) p(w)(n) and N-w(u) = Sigma (n less than or equal tou) w(n) be the summatory functions for p(w)(n) and w(n), respectively. Generalizing results of G. A. Freiman and E. E. Kohlbecker, we show that, for a large class of functions Phi (u) and lambda (u), an estimate for P-w(u) of the form log P-w(u) = Phi (u){1 + Ou(1/lambda (u)) } (u --> infinity) implies an estimate for N-w(u) of the form N-w(u) = Phi* (u){1 + O (1/log lambda (u)) } (u --> infinity) with a suitable function Phi* (u) defined in terms of Phi (u). We apply this result and related results to obtain characterizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms of the asymptotic behavior of certain weighted partition functions.
引用
收藏
页码:866 / 896
页数:31
相关论文
共 50 条
  • [1] Sensitivity functions and their uses in inverse problems
    Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8205, United States
    J Inverse Ill Posed Probl, 2007, 7 (683-708): : 683 - 708
  • [2] Inverse Problems in Classes of Entire Functions
    Anikonov Y.E.
    Ayupova N.B.
    Journal of Mathematical Sciences, 2017, 221 (6) : 758 - 771
  • [3] Inverse problems of submodular functions on digraphs
    Cai, M
    Yang, X
    Li, Y
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (03) : 559 - 575
  • [4] Inverse Problems of Submodular Functions on Digraphs
    M. Cai
    X. Yang
    Y. Li
    Journal of Optimization Theory and Applications, 2000, 104 : 559 - 575
  • [5] Inverse problems on the parity of meromorphic functions
    Liu, Xinling
    Liu, Kai
    Korhonen, Risto
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [6] ω-Harmonic functions and inverse conductivity problems on networks
    Chung, SY
    Berenstein, CA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (04) : 1200 - 1226
  • [7] Inverse optimization problems with multiple weight functions
    Berczi, Kristof
    Mendoza-Cadena, Lydia Mirabel
    Varga, Kitti
    DISCRETE APPLIED MATHEMATICS, 2023, 327 : 134 - 147
  • [8] Identification of transfer functions and statistical inverse problems
    Kishida, K
    PROGRESS IN NUCLEAR ENERGY, 2003, 43 (1-4) : 297 - 303
  • [9] A self-parametrizing partition model approach to tomographic inverse problems
    Bodin, T.
    Sambridge, M.
    Gallagher, K.
    INVERSE PROBLEMS, 2009, 25 (05)
  • [10] Restricted partition functions and inverse energy cascades in parity symmetry breaking flows
    Herbert, Corentin
    PHYSICAL REVIEW E, 2014, 89 (01):