Enhanced Biosensing Activity of Bimetallic Surface Plasmon Resonance Sensor

被引:32
|
作者
Kashyap, Ritayan [1 ]
Chakraborty, Soumik [1 ]
Zeng, Shuwen [2 ]
Swarnakar, Sikha [1 ]
Kaur, Simran [3 ]
Doley, Robin [3 ]
Mondal, Biplob [1 ]
机构
[1] Tezpur Univ, Dept Elect & Commun Engn, Tezpur 784028, Assam, India
[2] Univ Limoges, CNRS, XLIM Res Inst, UMR 7252, 123 Ave Albert Thomas, F-87060 Limoges, France
[3] Tezpur Univ, Dept Mol Biol & Biotechnol, Tezpur 784028, Assam, India
基金
欧盟地平线“2020”;
关键词
full width at half maximum (FWHM); monoclonal anti-IgG; pulsed DC magnetron; sensitivity; surface plasmon resonance; IMMOBILIZATION STRATEGIES; ANTIBODY INTERACTION; GOLD NANOPARTICLES; FIELD ENHANCEMENT; GAS-DETECTION; SENSITIVITY; SILVER; FILM;
D O I
10.3390/photonics6040108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Surface plasmon resonance (SPR) sensors present a challenge when high sensitivity and small FWHM (full width at half maximum) are required to be achieved simultaneously. FWHM is defined by the difference between the two extreme values of the independent variable at which the value of the dependent variable is equal to half of its maximum. A smaller value of FWHM indicates better accuracy of SPR measurements. Theoretically, many authors have claimed the possibility of simultaneously achieving high sensitivity and small FWHM, which in most of the cases has been limited by experimental validation. In this report, an experimental study on the improved surface plasmon resonance (SPR) characteristics of gold over silver bimetallic sensor chips of different film thicknesses is presented. A comparative study of antigen-antibody interaction of the bimetallic chip using a custom-made, low-cost, and portable SPR device based on an angular interrogation scheme of Kretschmann configuration is performed. Pulsed direct current (DC) magnetron-sputtered bimetallic films of gold over silver were used in the construction of the SPR chip. The FWHM and sensitivity of the bimetallic sensors were firstly characterized using standard solutions of known refractive index which were later immobilized with monoclonal anti-immunoglobulin G (IgG) in the construction of the SPR biochip. Spectroscopic measurements such as ultraviolet-visible light spectroscopy (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR) were used for the confirmation of the immobilization of the antibody. The performance of the bimetallic SPR biochip was investigated by exposing the sensor to various concentrations of the target protein. The results indicated that the bimetallic sensors of silver/gold had a 3.5-fold reduced FWHM compared to pure gold-based sensors, indicating a higher detection accuracy. In addition, they exhibited a significant shift in resonance angle as high as 8.5 +/- 0.2 due to antigen-antibody interaction, which was similar to 1.42-fold higher than observed for pure silver-based sensors.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Surface Plasmon Resonance of A Bimetallic Nanostructured Film for Enhanced Optical Sensitivity
    Mabe, Taylor
    Zeng, Zheng
    Bagra, Bhawna
    Ryan, James
    Wei, Jianjun
    CHEMISTRYSELECT, 2018, 3 (11): : 3018 - 3023
  • [12] Gold Albumin Sandwich Structures for Enhanced Biosensing Using Surface Plasmon Resonance
    Rueger, Fabian
    Keusgen, Michael
    Vornicescu, Doru
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (13):
  • [13] Localized surface plasmon resonance based biosensing
    Csaki, Andrea
    Stranik, Ondrej
    Fritzsche, Wolfgang
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2018, 18 (03) : 279 - 296
  • [14] Surface plasmon resonance polarizator for biosensing and imaging
    Patskovsky, S.
    Meunier, M.
    Kabashin, A. V.
    OPTICS COMMUNICATIONS, 2008, 281 (21) : 5492 - 5496
  • [15] Surface Plasmon Resonance Imaging for Medical and Biosensing
    Wilkop, Thomas
    Ramlogan, Anil S.
    Alberts, Ian L.
    de Bruijn, Joost D.
    Ray, Asim K.
    2009 IEEE SENSORS, VOLS 1-3, 2009, : 1571 - 1574
  • [16] Parametric study on the bimetallic cladding silica waveguide surface plasmon resonance sensor
    Shuqing Yang
    Lanting Ji
    Shanshan Zhao
    Juan Su
    Chi Wu
    Optical and Quantum Electronics, 2023, 55
  • [17] Classical and Quantum Surface Plasmon Resonance Biosensing
    Mpofu, K. T.
    Ombinda-Lemboumba, S.
    Mthunzi-Kufa, P.
    INTERNATIONAL JOURNAL OF OPTICS, 2023, 2023
  • [18] Innovative Surface Plasmon Resonance biosensing architectures
    Desfours, C.
    Hastanin, J.
    Drucbert, A-S
    Maalouli, N.
    Lenaerts, C.
    Fleury-Frenette, K.
    Piron, P.
    Habraken, S.
    2012 INTERNATIONAL CONFERENCE ON FIBER OPTICS AND PHOTONICS (PHOTONICS), 2012,
  • [19] Enhancements to surface plasmon resonance imaging for biosensing
    Charette, Paul G.
    2015 PHOTONICS NORTH, 2015,
  • [20] Bimetallic silver-gold film waveguide surface plasmon resonance sensor
    Ong, Biow Hiem
    Yuan, Xiaocong
    Tjin, Swee Chuan
    FIBER AND INTEGRATED OPTICS, 2007, 26 (04) : 229 - 240