Estimating skin blood saturation by selecting a subset of hyperspectral imaging data

被引:3
|
作者
Ewerlof, Maria [1 ]
Salerud, E. Goran [1 ]
Stromberg, Tomas [1 ]
Larsson, Marcus [1 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, S-58183 Linkoping, Sweden
关键词
Hyper spectral imaging; skin blood saturation; diffuse reflectance spectroscopy; Monte Carlo; skin optical properties; computer modelling and simulation; microcirculation; OPTICAL-PROPERTIES; MODEL;
D O I
10.1117/12.2075292
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Skin blood haemoglobin saturation (s(b)) can be estimated with hyperspectral imaging using the wavelength (lambda) range of 450-700 nm where haemoglobin absorption displays distinct spectral characteristics. Depending on the image size and photon transport algorithm, computations may be demanding. Therefore, this work aims to evaluate subsets with a reduced number of wavelengths for s(b) estimation. White Monte Carlo simulations are performed using a two-layered tissue model with discrete values for epidermal thickness (T-epi) and the reduced scattering coefficient (mu s'), mimicking an imaging setup. A detected intensity look-up table is calculated for a range of model parameter values relevant to human skin, adding absorption effects in the post-processing. Skin model parameters, including absorbers, are mu(s)' (lambda) T-epi, haemoglobin saturation (s(b)), tissue fraction blood (c(b)) and tissue fraction melanin (c(mel)). The skin model paired with the look-up table allow spectra to be calculated swiftly. Three inverse models with varying number of free parameters are evaluated: A(s(b), c(b)), B(s(b), c(b), c(mel)) and C(all parameters free). Fourteen wavelength candidates are selected by analysing the maximal spectral sensitivity to s(b) and minimizing the sensitivity to s(b). All possible combinations of these candidates with three, four and 14 wavelengths, as well as the full spectral range, are evaluated for estimating s(b) for 1000 randomly generated evaluation spectra. The results show that the simplified models A and B estimated.. b accurately using four wavelengths (mean error 2.2% for model B). If the number of wavelengths increased, the model complexity needed to be increased to avoid poor estimations.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Partially supervised detection using band subset selection in hyperspectral data
    Jimenez, LO
    Velez, M
    Chaar, Y
    Fontan, F
    Santiago, C
    Hernandez, R
    ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY V, 1999, 3717 : 148 - 156
  • [42] SpectraCam® : A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation
    Nkengne, A.
    Robic, J.
    Seroul, P.
    Gueheunneux, S.
    Jomier, M.
    Vie, K.
    SKIN RESEARCH AND TECHNOLOGY, 2018, 24 (01) : 99 - 107
  • [43] Hyperspectral fluorescence imaging for mouse skin tumor detection
    Kong, Seong G.
    Martin, Matthew E.
    Vo-Dinh, Tuan
    ETRI JOURNAL, 2006, 28 (06) : 770 - 776
  • [44] Hyperspectral Imaging Technique for Estimating the Shelf-Life of Kiwifruits
    Shao Yuan-yuan
    Wang Yong-xian
    Xuan Guan-tao
    Gao Zong-mei
    Liu Yi
    Han Xiang
    Hu Zhi-chao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (06) : 1940 - 1946
  • [45] Itchy Skin Region Detection using Hyperspectral Imaging
    Saleheen, Firdous
    Oleksyuk, Vira
    Won, Chang-Hee
    IMAGE SENSING TECHNOLOGIES: MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS V, 2018, 10656
  • [46] Hyperspectral imaging as a diagnostic tool for chronic skin ulcers
    Denstedt, Martin
    Pukstad, Brita S.
    Paluchowski, Lukasz
    Hernandez-Palacios, Julio E.
    Randeberg, Lise Lyngsnes
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS IX, 2013, 8565
  • [47] Hyperspectral imaging for tumor segmentation on pigmented skin lesions
    Aloupogianni, Eleni
    Ichimura, Takaya
    Hamada, Mei
    Ishikawa, Masahiro
    Murakami, Takuo
    Sasaki, Atsushi
    Nakamura, Koichiro
    Kobayashi, Naoki
    Obi, Takashi
    Journal of Biomedical Optics, 2022, 27 (10):
  • [48] Hyperspectral Microscopic Imaging of Skin Squamous Cell Carcinoma
    Sheng, Zhenfei
    Zhang, Xiaofa
    Qiu, Zelong
    Zhang, Chunguang
    Wang, Hao
    Huang, Xi
    Tan, Zhiwei
    Qiu, Weijie
    Wang, Pengchong
    Liu, Wenyao
    Duan, Maoqiang
    Huang, Xiaoli
    Liu, Yiping
    Xing, Yuwei
    Lin, Binbin
    14TH NATIONAL CONFERENCE ON LASER TECHNOLOGY AND OPTOELECTRONICS (LTO 2019), 2019, 11170
  • [49] Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development
    Sorg, BS
    Moeller, BJ
    Donovan, O
    Cao, YT
    Dewhirst, MW
    JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (04)
  • [50] Efficient Mapping of Tissue Oxygen Saturation Using Hyperspectral Imaging and GAN
    Chang, Minhye
    Lee, Wonju
    Jeong, Kye Young
    Kim, Jun Wan
    Jung, Chang Hee
    IEEE ACCESS, 2024, 12 : 153822 - 153831