Estimating skin blood saturation by selecting a subset of hyperspectral imaging data

被引:3
|
作者
Ewerlof, Maria [1 ]
Salerud, E. Goran [1 ]
Stromberg, Tomas [1 ]
Larsson, Marcus [1 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, S-58183 Linkoping, Sweden
关键词
Hyper spectral imaging; skin blood saturation; diffuse reflectance spectroscopy; Monte Carlo; skin optical properties; computer modelling and simulation; microcirculation; OPTICAL-PROPERTIES; MODEL;
D O I
10.1117/12.2075292
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Skin blood haemoglobin saturation (s(b)) can be estimated with hyperspectral imaging using the wavelength (lambda) range of 450-700 nm where haemoglobin absorption displays distinct spectral characteristics. Depending on the image size and photon transport algorithm, computations may be demanding. Therefore, this work aims to evaluate subsets with a reduced number of wavelengths for s(b) estimation. White Monte Carlo simulations are performed using a two-layered tissue model with discrete values for epidermal thickness (T-epi) and the reduced scattering coefficient (mu s'), mimicking an imaging setup. A detected intensity look-up table is calculated for a range of model parameter values relevant to human skin, adding absorption effects in the post-processing. Skin model parameters, including absorbers, are mu(s)' (lambda) T-epi, haemoglobin saturation (s(b)), tissue fraction blood (c(b)) and tissue fraction melanin (c(mel)). The skin model paired with the look-up table allow spectra to be calculated swiftly. Three inverse models with varying number of free parameters are evaluated: A(s(b), c(b)), B(s(b), c(b), c(mel)) and C(all parameters free). Fourteen wavelength candidates are selected by analysing the maximal spectral sensitivity to s(b) and minimizing the sensitivity to s(b). All possible combinations of these candidates with three, four and 14 wavelengths, as well as the full spectral range, are evaluated for estimating s(b) for 1000 randomly generated evaluation spectra. The results show that the simplified models A and B estimated.. b accurately using four wavelengths (mean error 2.2% for model B). If the number of wavelengths increased, the model complexity needed to be increased to avoid poor estimations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head
    Khoobehi, B
    Beach, JM
    Kawano, H
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 (05) : 1464 - 1472
  • [32] Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation
    Chen, T.
    Yuen, P.
    Richardson, M.
    She, Z.
    Liu, G.
    IMAGING SCIENCE JOURNAL, 2015, 63 (05): : 290 - 295
  • [33] Differences in retinal oxygen saturation in rat measured with hyperspectral imaging
    Qian, JX
    Leder, HA
    Ning, J
    Andara, L
    Beach, JM
    Khoobehi, B
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46
  • [34] Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera
    Ewerlof, Maria
    Larsson, Marcus
    Salerud, E. Goran
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XV, 2017, 10068
  • [35] Simulation of hyperspectral earth imaging data
    S. P. Nepobedimyĭ
    B. M. Balter
    V. V. Egorov
    A. P. Kalinin
    I. D. Rodinov
    I. P. Rodionova
    M. V. Stal’naya
    Doklady Physics, 2008, 53 : 332 - 336
  • [36] Exploratory analysis of hyperspectral imaging data
    Olarini, Alessandra
    Cocchi, Marina
    Motto-Ros, Vincent
    Duponchel, Ludovic
    Ruckebusch, Cyril
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2024, 252
  • [37] Simulation of hyperspectral earth imaging data
    Nepobedimyi, S. P.
    Balter, B. M.
    Egorov, V. V.
    Kalinin, A. P.
    Rodionov, I. D.
    Rodionova, I. P.
    Stal'naya, M. V.
    DOKLADY PHYSICS, 2008, 53 (06) : 332 - 336
  • [38] Unsupervised data fusion for hyperspectral imaging
    Jiménez, LO
    Velez-Reyes, M
    Rivera, JL
    Velázquez, HT
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 : 180 - 189
  • [39] Afghanistan Mapped with Hyperspectral Imaging Data
    不详
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2014, 28 (04): : 14 - 14
  • [40] Estimating winter wheat yield from hyperspectral data
    Wang, JH
    Liu, LY
    Huang, WJ
    Zhao, CJ
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2233 - 2235