On the completely bounded approximation property of crossed products

被引:2
|
作者
Meng, Qing [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Completely bounded approximation property; crossed product; amenable action; WEAK HAAGERUP PROPERTY; HERZ-SCHUR MULTIPLIERS; C-ASTERISK-ALGEBRAS;
D O I
10.1007/s12044-021-00624-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the recently developed theory of Herz-Schur multipliers of a C*-dynamical system, we prove equality of the Haagerup constants for a C*-algebra and its crossed product by an amenable action.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Operators with the Lipschitz bounded approximation property
    Liu, Rui
    Shen, Jie
    Zheng, Bentuo
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (07) : 1545 - 1554
  • [22] THE WEAK BOUNDED APPROXIMATION PROPERTY OF PAIRS
    Chen, Dongyang
    Kim, Ju Myung
    Zheng, Bentuo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (04) : 1665 - 1673
  • [23] Operators with the Lipschitz bounded approximation property
    Rui Liu
    Jie Shen
    Bentuo Zheng
    Science China(Mathematics), 2023, 66 (07) : 1545 - 1554
  • [24] BV has the bounded approximation property
    Alberti, G
    Csörnyei, M
    Pelczynski, A
    Preiss, D
    JOURNAL OF GEOMETRIC ANALYSIS, 2005, 15 (01) : 1 - 7
  • [25] THE SEPARABLE WEAK BOUNDED APPROXIMATION PROPERTY
    Lee, Keun Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 69 - 83
  • [26] On the bounded approximation property in Banach spaces
    Jesús M. F. Castillo
    Yolanda Moreno
    Israel Journal of Mathematics, 2013, 198 : 243 - 259
  • [27] ON THE BOUNDED APPROXIMATION PROPERTY IN BANACH SPACES
    Castillo, Jesus M. F.
    Moreno, Yolanda
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 198 (01) : 243 - 259
  • [28] Operators with the Lipschitz bounded approximation property
    Rui Liu
    Jie Shen
    Bentuo Zheng
    Science China Mathematics, 2023, 66 : 1545 - 1554
  • [29] A NEW CHARACTERIZATION OF THE BOUNDED APPROXIMATION PROPERTY
    Kim, Ju Myung
    Lee, Keun Young
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (04): : 672 - 677
  • [30] BV has the bounded approximation property
    Alberti G.
    Csörnyei M.
    Pelczyński A.
    Preiss D.
    The Journal of Geometric Analysis, 2005, 15 (1): : 1 - 7