Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase

被引:86
|
作者
Sakihama, Y
Mano, J
Sano, S
Asada, K
Yamasaki, H [1 ]
机构
[1] Univ Ryukyus, Fac Sci, Lab Cell & Funct Biol, Okinawa 9030213, Japan
[2] Kyoto Univ, Food Sci Res Inst, Uji 6110011, Japan
[3] Kyoto Prefectural Univ, Fac Agr, Dept Biol Resource Chem, Kyoto 6068522, Japan
[4] Fukuyama Univ, Fac Engn, Dept Biotechnol, Fukuyama, Hiroshima 7290292, Japan
基金
日本学术振兴会;
关键词
active oxygen; antioxidant; ascorbate; monodehydroascorbate radical reductase; phenolics; phenoxyl radicals;
D O I
10.1006/bbrc.2000.4053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Monodehydroascorbate (MDA) reductase catalyzes the reduction of MDA, the only organic radical substrate for the enzyme reported so far. Here, we show that cucumber MDA reductase is also capable of reducing phenoxyl radicals which are generated by horseradish peroxidase (HRP) with H2O2. The addition of MDA reductase plus NADH suppressed the HRP/H2O2-dependent oxidation of quercetin, accompanied by the oxidation of NADH, The quenching of the quercetin radical by MDA reductase plus NADH was confirmed by ESR. MDA reductase with NADH also suppressed the HRP/H2O2-dependent oxidation of hydroxycinnamates, including ferulic acid, coniferyl alcohol, and chlorogenic acid. Thus, the phenoxyl radicals of plant phenols can be reduced to their respective parent phenols by MDA reductase via a mechanism similar to the reduction of MDA. (C) 2000 Academic Press.
引用
收藏
页码:949 / 954
页数:6
相关论文
共 50 条
  • [41] SHORT-LIFE PHENOXYL AND SEMIQUINONE RADICALS
    KHUDYAKOV, IV
    KUZMIN, VA
    USPEKHI KHIMII, 1975, 44 (10) : 1748 - 1774
  • [42] The reactivity of phenoxyl radicals of bioantioxidants in the abstraction reactions
    Denisova, T. G.
    Denisov, E. T.
    RUSSIAN CHEMICAL BULLETIN, 2009, 58 (08) : 1609 - 1615
  • [43] Quinoids, quinoid radicals, and phenoxyl radicals formed from estrogens and antiestrogens
    Bolton, JL
    TOXICOLOGY, 2002, 177 (01) : 55 - 65
  • [44] Rate constants for reactions of phenoxyl radicals in solution
    Neta, P
    Grodkowski, J
    JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2005, 34 (01) : 109 - 199
  • [45] NEW PHOSPHORUS-CONTAINING PHENOXYL RADICALS
    PROKOFEV, AI
    PROVOTOROVA, NP
    KARDANOV, NA
    BUBNOV, NN
    SOLODOVNIKOV, SP
    GODOVIKOV, NN
    KABACHNIKOV, MI
    BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR DIVISION OF CHEMICAL SCIENCE, 1981, 30 (08): : 1534 - 1541
  • [46] ENTHALPIES OF THE FORMATION OF HYDROXYSUBSTITUTED AND METHOXYSUBSTITUTED PHENOXYL RADICALS
    PONOMAREV, DA
    TAKHISTOV, VV
    MISHAREV, AD
    ORLOV, VM
    ORLOV, YD
    ZHURNAL ORGANICHESKOI KHIMII, 1991, 27 (10): : 2181 - 2183
  • [47] Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation
    Begara-Morales, Juan C.
    Sanchez-Calvo, Beatriz
    Chaki, Mounira
    Mata-Perez, Capilla
    Valderrama, Raquel
    Padilla, Maria N.
    Lopez-Jaramillo, Javier
    Luque, Francisco
    Corpas, Francisco J.
    Barroso, Juan B.
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (19) : 5983 - 5996
  • [48] PROPERTIES OF MONODEHYDROASCORBATE REDUCTASE AND DEHYDROASCORBATE REDUCTASE AND THEIR PARTICIPATION IN THE REGENERATION OF ASCORBATE IN EUGLENA-GRACILIS
    SHIGEOKA, S
    YASUMOTO, R
    ONISHI, T
    NAKANO, Y
    KITAOKA, S
    JOURNAL OF GENERAL MICROBIOLOGY, 1987, 133 : 227 - 232
  • [49] NADH-MONODEHYDROASCORBATE REDUCTASE IN HUMAN-ERYTHROCYTE MEMBRANES
    GOLDENBERG, H
    GREBING, C
    LOW, H
    BIOCHEMISTRY INTERNATIONAL, 1983, 6 (01): : 1 - 9
  • [50] Purification and cDNA cloning of chloroplastic monodehydroascorbate reductase from spinach
    Sano, S
    Tao, S
    Endo, Y
    Inaba, T
    Hossain, A
    Hossain, MA
    Miyake, C
    Matsuo, M
    Aoki, H
    Asada, K
    Saito, K
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2005, 69 (04) : 762 - 772