Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase

被引:86
|
作者
Sakihama, Y
Mano, J
Sano, S
Asada, K
Yamasaki, H [1 ]
机构
[1] Univ Ryukyus, Fac Sci, Lab Cell & Funct Biol, Okinawa 9030213, Japan
[2] Kyoto Univ, Food Sci Res Inst, Uji 6110011, Japan
[3] Kyoto Prefectural Univ, Fac Agr, Dept Biol Resource Chem, Kyoto 6068522, Japan
[4] Fukuyama Univ, Fac Engn, Dept Biotechnol, Fukuyama, Hiroshima 7290292, Japan
基金
日本学术振兴会;
关键词
active oxygen; antioxidant; ascorbate; monodehydroascorbate radical reductase; phenolics; phenoxyl radicals;
D O I
10.1006/bbrc.2000.4053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Monodehydroascorbate (MDA) reductase catalyzes the reduction of MDA, the only organic radical substrate for the enzyme reported so far. Here, we show that cucumber MDA reductase is also capable of reducing phenoxyl radicals which are generated by horseradish peroxidase (HRP) with H2O2. The addition of MDA reductase plus NADH suppressed the HRP/H2O2-dependent oxidation of quercetin, accompanied by the oxidation of NADH, The quenching of the quercetin radical by MDA reductase plus NADH was confirmed by ESR. MDA reductase with NADH also suppressed the HRP/H2O2-dependent oxidation of hydroxycinnamates, including ferulic acid, coniferyl alcohol, and chlorogenic acid. Thus, the phenoxyl radicals of plant phenols can be reduced to their respective parent phenols by MDA reductase via a mechanism similar to the reduction of MDA. (C) 2000 Academic Press.
引用
收藏
页码:949 / 954
页数:6
相关论文
共 50 条
  • [31] Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco
    Yin, Lina
    Wang, Shiwen
    Eltayeb, Amin Elsadig
    Uddin, Md. Imtiaz
    Yamamoto, Yoko
    Tsuji, Wataru
    Takeuchi, Yuichi
    Tanaka, Kiyoshi
    PLANTA, 2010, 231 (03) : 609 - 621
  • [32] Evidence for the Prerequisite Formation of Phenoxyl Radicals in Radical-Mediated Peptide Tyrosine Nitration In Vacuo
    Lai, Cheuk Kuen
    Tang, Wai Kit
    Siu, Chi-Kit
    Chu, Ivan K.
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (01) : 331 - 335
  • [33] The reactivity of phenoxyl radicals of bioantioxidants in the abstraction reactions
    T. G. Denisova
    E. T. Denisov
    Russian Chemical Bulletin, 2009, 58 : 1609 - 1615
  • [34] Formation of phenoxyl and methylphenoxyl radicals by pulse radiolysis
    Roder, M
    Wojnarovits, L
    Foldiak, G
    MAGYAR KEMIAI FOLYOIRAT, 1998, 104 (09): : 354 - 358
  • [35] Ambident reactivity of phenoxyl radicals in DNA adduction
    Manderville, RA
    CANADIAN JOURNAL OF CHEMISTRY, 2005, 83 (09) : 1261 - 1267
  • [36] POLAROGRAPHIC STUDY OF SOME STABLE PHENOXYL RADICALS
    IOFFE, NT
    PROKOFEV, AI
    SOLODOVN.SP
    VOLODKIN, AA
    NIKIFORO.GA
    ERSHOV, VV
    IZVESTIYA AKADEMII NAUK SSSR-SERIYA KHIMICHESKAYA, 1971, (12): : 2844 - +
  • [37] Reaction of superoxide with phenoxyl-type radicals
    d'Alessandro, N
    Bianchi, G
    Fang, XW
    Jin, FM
    Schuchmann, HP
    von Sonntag, C
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 2000, (09): : 1862 - 1867
  • [38] ELECTRON-EXCITED STATES OF PHENOXYL RADICALS
    KUZMIN, VA
    KHUDYAKOV, IV
    TATIKOLOV, AS
    PROKOFEV, AI
    EMANUEL, NM
    DOKLADY AKADEMII NAUK SSSR, 1976, 227 (06): : 1394 - 1396
  • [39] INTERACTION BETWEEN STABLE PHENOXYL RADICALS AN PHENOLS
    KUKES, SG
    BUBNOV, NN
    PROKOFEV, AI
    SOLODOVN.SP
    VOLODKIN, AA
    NIKIFORO.GA
    ERSHOV, VV
    IZVESTIYA AKADEMII NAUK SSSR-SERIYA KHIMICHESKAYA, 1973, (03): : 684 - 686
  • [40] SILICON ORGANIC SUBSTITUTE MIGRATIONS IN PHENOXYL RADICALS
    RAZUVAEV, GA
    VASILEIS.NS
    MUSLIN, DV
    VAVILINA, NN
    USPENSKA.SN
    ZHURNAL ORGANICHESKOI KHIMII, 1970, 6 (05): : 980 - &