Existence and Non-Existence of Fisher-KPP Transition Fronts

被引:64
|
作者
Nolen, James [1 ]
Roquejoffre, Jean-Michel [2 ]
Ryzhik, Lenya [3 ]
Zlatos, Andrej [4 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Univ Toulouse 3, Inst Math, UMR CNRS 5219, F-31062 Toulouse, France
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
DIFFUSION EQUATIONS; GENERALIZED FRONTS;
D O I
10.1007/s00205-011-0449-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Fisher-KPP-type reaction-diffusion equations with spatially inhomogeneous reaction rates. We show that a sufficiently strong localized inhomogeneity may prevent existence of transition-front-type global-in-time solutions while creating a global-in-time bump-like solution. This is the first example of a medium in which no reaction-diffusion transition front exists. A weaker localized inhomogeneity leads to the existence of transition fronts, but only in a finite range of speeds. These results are in contrast with both Fisher-KPP reactions in homogeneous media as well as ignition-type reactions in inhomogeneous media.
引用
收藏
页码:217 / 246
页数:30
相关论文
共 50 条
  • [31] Global existence of solutions for a p-Laplacian equation with nonlocal Fisher-KPP type reaction terms
    Tao, Xueyan
    Fang, Zhong Bo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7361 - 7371
  • [32] Traveling fronts for Fisher-KPP lattice equations in almost-periodic media
    Liang, Xing
    Wang, Hongze
    Zhou, Qi
    Zhou, Tao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (05): : 1179 - 1237
  • [34] ON THE EXISTENCE AND NON-EXISTENCE OF ELLIPTIC PSEUDOPRIMES
    Mueller, Siguna
    MATHEMATICS OF COMPUTATION, 2010, 79 (270) : 1171 - 1190
  • [35] On the Existence and Non-Existence of Russian Metaphysics
    Serbinenko, Vyacheslav V.
    VOPROSY FILOSOFII, 2017, (08) : 131 - 145
  • [36] Ontological proofs of existence and non-existence
    Hájek P.
    Studia Logica, 2008, 90 (2) : 257 - 262
  • [37] Existence and non-existence of minimal graphs
    Ding, Qi
    Jost, J.
    Xin, Y. L.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 391 - 424
  • [38] Uniform Boundedness and Global Existence of Solutions to a Quasilinear Diffusion Equation with Nonlocal Fisher-KPP Type Reaction Term
    Tao, Xueyan
    Fang, Zhong Bo
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (01): : 89 - 105
  • [40] Analytical Solutions of the Fisher-KPP equations
    Yin, Weishi
    Jiang, Zhixia
    PROCEEDINGS OF THE 2015 3RD INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2015, 35 : 1840 - 1843