A generalized Hamiltonian structure of the fractional soliton equation hierarchy is presented by using differential forms and exterior derivatives of fractional orders. We construct the generalized fractional trace identity through the Riemann-Liouville fractional derivative. An example of the fractional KN soliton equation hierarchy and Hamiltonian structure is presented, which is a new integrable hierarchy and possesses Hamiltonian structure. (C) 2011 Elsevier Ltd. All rights reserved.
机构:
Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
Taishan Med Univ, Coll Informat Engn, Tai An 271016, Shandong, Peoples R ChinaShanghai Univ, Dept Math, Shanghai 200444, Peoples R China
Yue, Chao
Xia, Tiecheng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Dept Math, Shanghai 200444, Peoples R ChinaShanghai Univ, Dept Math, Shanghai 200444, Peoples R China
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Fu, Yayun
Cai, Wenjun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Cai, Wenjun
Wang, Yushun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China